利用围压提高二级大腔体静高压装置压力极限的初步实验探索

王永坤 贺端威 陈宏洋 王文丹 刘方明 何飞 张瑜 胡艺 寇自力 彭放 高上攀 马迎功 杨兴辉

王永坤, 贺端威, 陈宏洋, 王文丹, 刘方明, 何飞, 张瑜, 胡艺, 寇自力, 彭放, 高上攀, 马迎功, 杨兴辉. 利用围压提高二级大腔体静高压装置压力极限的初步实验探索[J]. 高压物理学报, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010
引用本文: 王永坤, 贺端威, 陈宏洋, 王文丹, 刘方明, 何飞, 张瑜, 胡艺, 寇自力, 彭放, 高上攀, 马迎功, 杨兴辉. 利用围压提高二级大腔体静高压装置压力极限的初步实验探索[J]. 高压物理学报, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010
WANG Yong-Kun, HE Duan-Wei, CHEN Hong-Yang, WANG Wen-Dan, LIU Fang-Ming, HE Fei, ZHANG Yu, HU Yi, KOU Zi-li, PENG Fang, GAO Shang-Pan, MA Ying-Gong, YANG Xing-Hui. Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010
Citation: WANG Yong-Kun, HE Duan-Wei, CHEN Hong-Yang, WANG Wen-Dan, LIU Fang-Ming, HE Fei, ZHANG Yu, HU Yi, KOU Zi-li, PENG Fang, GAO Shang-Pan, MA Ying-Gong, YANG Xing-Hui. Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 223-231. doi: 10.11858/gywlxb.2015.03.010

利用围压提高二级大腔体静高压装置压力极限的初步实验探索

doi: 10.11858/gywlxb.2015.03.010
基金项目: 国家自然科学基金(51472171, 11427810);国家自然科学基金委-中国科学院联合基金(U1332104)
详细信息
    作者简介:

    王永坤(1987—), 男,硕士,主要从事大腔体静高压技术、超硬材料合成和高压材料物性研究.E-mail:wyk2008xynu@163.com

    通讯作者:

    贺端威(1969—), 男,博士,教授,博士生导师,主要从事高压科学与技术、超硬材料及纳米材料的研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.3

Preliminary Experiment Exploring for Improving Pressure Limit of Two-Stage Hydrostatic High-Pressure Apparatus Using Confining Pressure

  • 摘要: 采用基于国产铰链式六面顶压机二级6-8型大腔体静高压装置中的10/4(即八面体传压介质边长为10 mm, 二级WC-Co硬质合金立方块截角边长为4 mm)组装,选择不同的围压材料和传压硬质合金台棱、圆片,在室温下用ZnTe的高压相变对压腔进行了压力标定。实验结果表明,叶蜡石是较合适的围压材料; 但由于传压台棱、圆片自身强度的限制,及一级压腔形成的围压值较低等原因, 致使实验没有达到预期的末级压砧围压增强效果。通过结合两种压腔的力学简化模型分析得知,围压材料与二级增压装置的预密封边共同形成了二级压腔的密封边,该大面积密封边消耗了系统的大部分加载力,因此在围压实验中没有观测到二级6-8型大腔体静高压装置压力极限的提高。

     

  • 图  WC-Co立方块示意图

    Figure  1.  Schematic of WC-Co cubes

    图  WC-Co台棱和圆片示意图

    Figure  2.  Drawings of WC-Co platform and WC-Co wafer

    图  实验Ⅰ最终组装实物照片

    Figure  3.  Physical photos of the final assemblies for Experiment Ⅰ

    图  二级增压单元组装实物图

    Figure  4.  Physical photos of two-stage pressurizing unit

    图  实验Ⅲ最终组装实物照片

    Figure  5.  Physical photos of final assemblies for Experiment Ⅲ

    图  实验Ⅰ中卸压后二级增压单元内部实物照片

    Figure  6.  Physical photos in the two-stage pressurization units of Experiment Ⅰ after decompressing

    图  ZnTe电阻随加载变化的曲线

    Figure  7.  Relations between the ZnTe resistance and loading in Experiment Ⅰ

    图  实验Ⅱ中卸压后二级增压单元内部实物照片

    Figure  8.  Physical photos in the two-stage pressurization units of Experiment Ⅱ after decompressing

    图  不同围压材料及传压介质条件下的二级压腔压力标定

    Figure  9.  Pressure calibration of the second-stage cell with different confining pressure materials and pressure transmitting cemented carbides

    图  10  实验Ⅲ中卸压后二级增压单元内部的实物照片

    Figure  10.  Physical photos in the two-stage pressurization units of Experiment Ⅲ after decompressing

    图  11  铰链式六面顶6×14 MN压机的力学简化模型

    Figure  11.  Simplified mechanics model of the hinge-type cubic-anvil 6×14 MN press

    图  12  基于6×14 MN压机的一级压腔压力标定

    Figure  12.  Pressure calibration of the first-stage cell based on 6×14 MN press

    表  1  基于6×14 MN六面顶压机, 相同油压下对应的实际压力、理想压力及压力损失率

    Table  1.   Actual pressure, ideal pressure and pressure loss ratio at the same oil pressure based on cubic-anvil 6×14 MN press

    Oil
    pressure/
    (MPa)
    Actual
    pressure/
    (GPa)
    Ideal
    pressure/
    (GPa)
    Pressure
    loss ratio/
    (%)
    40 5.0 10.00 50.0
    25 3.7 6.25 41.0
    15 2.5 3.75 33.3
    下载: 导出CSV

    表  2  基于6×8 MN压机二级6-8型大腔体高压装置的标准10/4组装, 相同油压下的实际压力、理想压力及压力损失率

    Table  2.   Actual pressure, ideal pressure and pressure loss ratio at the same oil pressure employing standard 10/4 assemble of two-stage 6-8 type pressure apparatus based on the domestic cubic-anvil 6×8 MN press

    Oil pressure/(MPa) Actual pressure/(GPa) Ideal pressure/(GPa) Percentage of pressure loss/(%)
    33 18.8 165 89
    22 15.6 110 86
    16 11.5-13.0 80 84
    12 8.5-9.2 60 84
    6 5.0 30 83
    下载: 导出CSV
  • [1] Fukura S, Nakagawa T, Kaga H. High spatial resolution photoluminescence and Raman spectroscopic measurements of a natural polycrystalline diamond and carbonado[J]. Diamond Relat Mater, 2005, 14(11): 1950-1954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=84bf34b894c66492a350f411a1dea260
    [2] Hemley R J, Soos Z G, Hanfland M, et al. Charge-transfer states in dense hydrogen charge-transfer states in dense hydrogen[J]. Nature, 1994, 369: 384-391. doi: 10.1038/369384a0
    [3] Ma Y, Eremets M, Oganov A R, et al. Transparent dense sodium[J]. Nature, 2009, 458: 182-185. doi: 10.1038/nature07786
    [4] Oganov A R, Ono S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in earth's D″ layer[J]. Nature, 2004, 430: 445-448. doi: 10.1038/nature02701
    [5] Qin J Q, He D W, Wang J H, et al. Is rhenium diboride a superhard material?[J]. Adv Mater, 2008, 20(24): 4780-4783. doi: 10.1002/adma.200801471
    [6] Tian Y J, Xu B, Yu D L, et al. Ultrahard nanotwinned cubic boron nitride[J]. Nature, 2013, 493: 385-493. doi: 10.1038/nature11728
    [7] Xu C, He D W, Wang H K, et al. Nano-polycrysalline diamond formation under ultrahigh pressure[J]. Int J Refract metals Hard Mater, 2013, 36: 232-237. doi: 10.1016/j.ijrmhm.2012.09.004
    [8] Han Q G, Ma H G, Zhou L, et al. Finite element design of double bevel anvils of large volume cubic high pressure apparatus[J]. Rev Sci Instrum, 2007, 78(11): 354-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5341ad93d8919691406f19542822cb39
    [9] Weidner D J, Wang Y, Vaughat M T. Strength of diamond[J]. Science, 1994, 266(5184): 419-422. doi: 10.1126/science.266.5184.419
    [10] Dubrovinsky L, Dubrovinskaia N. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar[J]. Nat Commun, 2012, 3: 1163-1166. doi: 10.1038/ncomms2160
    [11] 王文丹, 贺端威, 王海阔, 等.二级6-8型大腔体装置的高压发生效率机理研究[J].物理学报, 2010, 59(5): 3107-3115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030

    Wang W D, He D W, Wang H K, et al. Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus[J]. Acta Phys Sin, 2010, 59(5): 3107-3015. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201005030
    [12] Gao C X, Han Y H, MA Y Z, et al. Accurate measurements of high pressure resistivity in a diamond anvil cell[J]. Rev Sci Instrum, 2005, 76(8): 1035-1039.
    [13] Liu L G. Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature[J]. Earth Planet Sci Lett, 1974, 24(2): 224-228.
    [14] Liu X, Shieh S R, Fleet M E, et al. High-pressure study on lead fluorapatite[J]. Am Miner, 2008, 93(10): 1581-1584. doi: 10.2138/am.2008.2816
    [15] Khvostantsev L G. A verkh-niz(up-down)toroid device for generation of high pressure[J]. High Temp High press, 1984, 16(2): 165-169.
    [16] Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth Planet Sci Lett, 1984, 67(1): 70-78.
    [17] Syono Y, Manghani M H. High-Pressure Research: Application to Earth and Planetary Sciences[M]. Washington: AGU, 1992: 19.
    [18] Dobson D P, Ju L M, Alfe D, et al. A new belt-type apparatus for neutron-based rheological measurements at gigapascal pressures[J]. High Press Res, 2005, 25(2): 107-118. doi: 10.1080/08957950500143500
    [19] Tange Y, Irifune T, Funakoshi I. Pressure generation to 80 GPa using multianvil apparatus with sintered diamond anvils[J]. High Press Res, 2008, 28(3): 245-54. doi: 10.1080/08957950802208936
    [20] Kunimoto T, Irifune T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils[J]. J Phys: Condens Mater, 2010, 25(1): 2150-2160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001850854
    [21] 贺端威, 王福龙, 寇自力, 等.用于产生超高压的新型装置: 中国, 200710048839.2[P]. 2007-10-16.

    He D W, Wang F L, Kou Z L, et al. New device used to produce ultra high pressur: China, 2007, 200710048839.2[P]. 2007-10-16. (in Chinese)
    [22] 王福龙, 贺端威, 房雷鸣, 等.基于铰链式六面顶压机的二级6-8型大腔体静高压装[J].物理学报, 2008, 57: 5429-5434. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014

    Wang F L, He D W, Fang L M, et al. Design and assembley of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press[J]. Acta Phys Sin, 2008, 57: 5429-5334. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200809014
    [23] Wang H K, He D W, Tan N, et al. Note: An anvil-preformed gasket system to extend the pressure range for large volume cubic presses[J]. Rev Sci Instrum, 2010, 81(11): 1134-1139.
    [24] Wang H K, He D W, Yan X Z, et al. Quantitative measurements of pressure gradients for the pyrophyllite and magnesium oxide pressure-transmitting mediums to 8 GPa in a large-volume cubic cell[J]. High Press Res, 2011, 31(4): 581-591. doi: 10.1080/08957959.2011.614238
    [25] 管俊伟, 贺端威, 王海阔, 等.力学结构及末级压砧硬度对八面体压腔高压发生效率的影响[J].物理学报, 2012, 61(10): 100701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014

    Guan J W, He D W, Wang H K, et al. Influence of mechanical configuration and hardness of last stage anvil on high pressure producing efficiency for octahedral cell[J]. Acta Phys sin, 2012, 61: 100701. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201210014
    [26] 王海阔, 贺端威.一种新型大腔体高压装置: 中国, 201110091480.3[P]. 2011-09-21.

    Wang H K, He D W. A new large-volume high pressure apparatus: China, 201110091480.3[P]. 2011-09-21. (in Chinese)
    [27] 贺端威, 王海阔, 谭宁, 等.一种顶锤-预密封边高压装置: 中国, 2010101428204.7[P]. 2010-08-18.

    He D W, Wang H K, Tan N, et al. An anvil-performed gasket appratus: China, 2010101428204.7[P]. 2010-08-18. (in Chinese)
    [28] 曾绍连, 李卫.碳化钨增强钢铁基耐磨复合材料的研究和应用[J].特种铸造及有色合金, 2007, 27(6): 441-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzzzjyshj200706011

    Ceng L S, Li W. Research and application of tungsten carbide reinforced steel matrix wear resistant composite material[J]. Special casting and nonferrous alloys, 2007, 27(6): 441-444. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tzzzjyshj200706011
    [29] 高富强, 杨军, 甯尤军.围压对脆性材料力学性能影响的研究现状[J].有色金属, 2009, 61(2): 46-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks200902015

    Gao F Q, Yang J, Ning Y J. Research status in the effect of confining pressure on brittle material mechanics[J]. Non-ferrous metal, 2009, 61(2): 46-49. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysjs-ks200902015
    [30] McWilliams R S, Eggert J H, Hicks D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa[J]. Phys Rev B, 2010, 81(1): 014111. doi: 10.1103/PhysRevB.81.014111
    [31] Dubrovinsky L, Dubrovinskaia N, Prakapenka V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 640 Mbar[J]. Nat commun, 2012, 3: 1163. doi: 10.1038/ncomms2160
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  6208
  • HTML全文浏览量:  1954
  • PDF下载量:  240
出版历程
  • 收稿日期:  2014-12-08
  • 修回日期:  2014-05-07

目录

    /

    返回文章
    返回