超音速等离子体炬的磁流体动力学数值研究

陈浩 陈雄 周长省 薛海峰

陈浩, 陈雄, 周长省, 薛海峰. 超音速等离子体炬的磁流体动力学数值研究[J]. 高压物理学报, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004
引用本文: 陈浩, 陈雄, 周长省, 薛海峰. 超音速等离子体炬的磁流体动力学数值研究[J]. 高压物理学报, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004
CHEN Hao, CHEN Xiong, ZHOU Chang-Sheng, XUE Hai-Feng. Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004
Citation: CHEN Hao, CHEN Xiong, ZHOU Chang-Sheng, XUE Hai-Feng. Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch[J]. Chinese Journal of High Pressure Physics, 2015, 29(3): 185-190. doi: 10.11858/gywlxb.2015.03.004

超音速等离子体炬的磁流体动力学数值研究

doi: 10.11858/gywlxb.2015.03.004
基金项目: 中国空间技术研究院创新基金(CAST201228)
详细信息
    作者简介:

    陈浩(1989-), 男, 硕士研究生, 主要从事等离子体物理研究.E-mail:624627196@qq.com

    通讯作者:

    陈雄(1977-), 男, 博士, 副教授, 主要从事流体力学研究.E-mail:chenxiong@njust.edu.cn

  • 中图分类号: O361;O53

Magnetohydrodynamic Numerical Study in a Supersonic Plasma Torch

  • 摘要: 针对设计的喉径2 mm、工作电流为100 A的拉瓦尔喷嘴,在二维轴对称模型的基础上,对超音速等离子体炬中的流动及其外部射流进行了数值模拟。通过在阳极喷嘴内部采用基于磁矢量势的磁流体动力学模型,避免了对磁感应强度的复杂积分计算,得到了喷嘴内部多场耦合的结果及外部射流的流动状态, 分析了喷嘴内部电磁场对等离子体的加速作用及射流发展过程。结果显示,等离子体经历了亚音速→跨音速→超音速的发展过程,最终获得2.3Ma的超音速射流。研究结果为超音速等离子体炬的工业应用提供了理论基础。

     

  • 图  超音速等离子体炬计算模型

    Figure  1.  Numerical model of the supersonic plasma torch

    图  超音速等离子体炬压力场云图

    Figure  2.  Stress contours of the supersonic plasma torch

    图  超音速等离子体马赫数云图

    Figure  3.  Mach number contours of the supersonic plasma

    图  超音速等离子体射流波系结构示意图

    Figure  4.  Wave structure diagram of supersonic plasma jet

    图  超音速等离子炬轴线压强与速度对比

    Figure  5.  Contrast between the axis pressure and velocity of supersonic plasma torch

    图  超音速等离子体炬喷嘴外部压力等值线图

    Figure  6.  Pressure contours outside the supersonic plasma torch nozzle

    图  超音速等离子体炬温度场云图

    Figure  7.  Temperature contours of the supersonic plasma

    图  等离子体炬沿轴线温度

    Figure  8.  Temperature along the plasma torch axis

    图  超音速等离子炬轴线电流密度与电压值的对比

    Figure  9.  Contrast between the axis current density and the axis voltage of the supersonic plasma torch

    表  1  MHD模型边界条件

    Table  1.   Boundary conditions of MHD model

    Boundary p v T φ A
    DM - v/∂r=0, vr=vθ=0 ∂T/∂r=0 ∂φ/∂r=0 ∂Az/∂r=0, ∂Ar/∂r=0
    GH - 0 T=1 000 K φ=0 ∂Az/∂r=0, ∂Ar/∂r=0
    KLM p=0.1 MPa - T=300 K ∂φ/∂r=0 Az=0, Ar=0
    CE p=0.3 MPa vz=0.85 mm/s T=300 K ∂φ/∂r=0 ∂Az/∂r=0, ∂Ar/∂r=0
    AB - 0 T=3 000 K J is given ∂Az/∂r=0, ∂Ar/∂r=0
    下载: 导出CSV
  • [1] Gaitonde D V. Simulation of supersonic nozzle flows with plasma-based control[C]//39th AIAA Fluid Dynamics Conference. San antonio: AIAA, 2009: 1-29.
    [2] Wang H X, Wei F Z, Murphy A B, et al. Numerical investigation of the plasma flow through the constrictor of arc-heated thrusters[J]. J Phys D: Appl Phys, 2012, 45(23): 1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd2af7572f2057140dc7a695cce88d36
    [3] Pfender E, Fincke J, Spores R. Entrainment of cold gas into thermal plasma jets[J]. Plasma Chem Plasma Process, 1991, 11(4): 529-543. doi: 10.1007/BF01447164
    [4] Selezneva S E, Sember V, Gravelle D V, et al. Spectroscopic validation of the supersonic plasma jet model[J]. J Phys D: Appl Phys, 2002, 35(12): 1338-1349. doi: 10.1088/0022-3727/35/12/310
    [5] Selezneva S E, Boulos M I, van de Sanden M C M, et al. Stationary supersonic plasma expansion: Continuum fluid mechanics versus direct simulation Monte Carlo method[J]. J Phys D: Appl Phys, 2002, 35(12): 1362-1372. doi: 10.1088/0022-3727/35/12/312
    [6] 张冠中, 谢巍, 王俊华.常压下超音速等离子体射流的数值模拟[J].工程力学, 2003, 20(5): 139-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200305027

    Zhang G Z, Xie W, Wang J H. Numerical simulation of supersonic plasma jet under normal pressures[J]. Engineering mechanics, 2003, 20(5): 139-143. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx200305027
    [7] Han P, Chen X. Modeling of the subsonic-supersonic flow and heat transfer in a DC arc plasma torch[J]. Plasma Chem Plasma Process, 2001, 21(2): 249-264. doi: 10.1023/A:1007000431702
    [8] Yuan X Q, Zhao T Z, Guo W K, et al. Plasma flow characteristics inside the supersonic DC plasma torch[J]. Int J Mod Phys E, 2005, 14(2): 225-238. doi: 10.1142/S0218301305003016
    [9] 袁行球, 李辉, 赵太泽, 等.超音速等离子体炬的数值模拟[J].物理学报, 2004, 53(3): 788-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200403026

    Yuan X Q, Li H, Zhao T Z, et al. Numerical study of supersonic plasma torch[J]. Acta Physica Sinica, 2004, 53(3): 788-792. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200403026
    [10] Freton P, Gonzalez J J, Gleizes A, et al. Numerical and experimental study of a plasma cutting torch[J]. J Phys D: Appl Phys, 2002, 35(2): 2139-2148. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87ad98e78f423bc14b9bed3627c10aee
    [11] Lago F, Gonzalez J J, Freton P, et al. A numerical modeling of an electric arc and its interaction with the anode: Part Ⅰ. The two-dimensional model[J]. J Phys D: Appl Phys, 2004, 37(6): 883-897. doi: 10.1088/0022-3727/37/6/013
    [12] Bini R, Monno M, Boulos M I. Numerical and experimental study of transferred arcs in argon[J]. J Phys D: Appl Phys, 2006, 39(15): 3253-3266. doi: 10.1088/0022-3727/39/15/007
    [13] Murphy A B. Transport coefficients of air, argon-air, nitrogen-air, and oxygen-air plasmas[J]. Plasma Chem Plasma Process, 1995, 15(2): 279-307. doi: 10.1007/BF01459700
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  6707
  • HTML全文浏览量:  2131
  • PDF下载量:  311
出版历程
  • 收稿日期:  2013-03-13
  • 修回日期:  2014-10-23

目录

    /

    返回文章
    返回