准静态和动态加载对裂纹扩展阻力曲线的影响及其关系的研究

潘建华 陈学东 姜恒 王秀喜

潘建华, 陈学东, 姜恒, 王秀喜. 准静态和动态加载对裂纹扩展阻力曲线的影响及其关系的研究[J]. 高压物理学报, 2015, 29(2): 109-116. doi: 10.11858/gywlxb.2015.02.004
引用本文: 潘建华, 陈学东, 姜恒, 王秀喜. 准静态和动态加载对裂纹扩展阻力曲线的影响及其关系的研究[J]. 高压物理学报, 2015, 29(2): 109-116. doi: 10.11858/gywlxb.2015.02.004
PAN Jian-Hua, CHEN Xue-Dong, JIANG Heng, WANG Xiu-Xi. Loading Rate Effect on Crack Resistance Curves and Their Correlations[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 109-116. doi: 10.11858/gywlxb.2015.02.004
Citation: PAN Jian-Hua, CHEN Xue-Dong, JIANG Heng, WANG Xiu-Xi. Loading Rate Effect on Crack Resistance Curves and Their Correlations[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 109-116. doi: 10.11858/gywlxb.2015.02.004

准静态和动态加载对裂纹扩展阻力曲线的影响及其关系的研究

doi: 10.11858/gywlxb.2015.02.004
基金项目: 合肥通用机械研究院青年科技基金(2011011268)
详细信息
    作者简介:

    潘建华(1981—),男,博士研究生,主要从事断裂力学研究.E-mail:jhpan@mail.ustc.edu.cn

    通讯作者:

    陈学东(1964—),男,研究员,博士生导师,主要从事压力容器安全保障、断裂力学研究.E-mail:chenxuedong@hgmri.com

  • 中图分类号: O346.1

Loading Rate Effect on Crack Resistance Curves and Their Correlations

  • 摘要: 对典型压力容器用钢Q345R预制裂纹夏比冲击试样进行示波冲击试验,得到了Q345R钢的载荷-位移曲线,并根据试验数据,利用J积分增量方程和Schindler方法分别计算得到Q345R钢在冲击加载下的动态裂纹扩展阻力曲线(J-R曲线)。然后将动态J-R曲线和准静态加载条件下试验得到的J-R曲线进行对比发现,动态加载条件下的J-R曲线高于准静态加载时得到的结果。最后,建立了动态和准静态加载下J-R曲线之间的关系式,对工程应用具有重要的参考意义。

     

  • 图  预制裂纹夏比冲击试样载荷-位移曲线

    Figure  1.  Load-displacement curve of precrack Charpy specimen

    图  预制裂纹夏比冲击试样的宏观断口形貌

    Figure  2.  Macroscopic fracture photo of specimen

    图  裂纹扩展时典型的载荷-位移曲线示意图

    Figure  3.  Typical load-displacement curves for crack extension

    图  载荷-位移曲线上起裂点的确定

    Figure  4.  Crack initiation point determination onload-displacement curve

    图  两种方法获得Q345R钢的动态裂纹扩展阻力曲线

    Figure  5.  Dynamic crack resistance curves obtained by two different methods

    图  裂纹扩展阻力曲线与试验数据对比

    Figure  6.  Comparison between crack resistance curve and experimental data

    表  1  Q345R钢的化学成分

    Table  1.   Chemical composition of Q345R steel

    Element Mass fraction/(%)
    C 0.150
    Si 0.345
    Mn 1.450
    P 0.014
    Cr 0.068
    Ni 0.028
    Cu 0.094 0
    S 0.006 4
    Mo 0.009 3
    下载: 导出CSV

    表  2  夏比冲击试样疲劳预制裂纹参数

    Table  2.   Parameters of fatigue precrack Charpy specimen

    Specimen
    No.
    Ratio of
    stress
    Max.fatigue
    load/(N)
    Min.fatigue
    load/(N)
    Cycle
    times
    Front crack
    length/(mm)
    Back crack
    length/(mm)
    1 0.1 3 000 300 38 000 1.49 1.53
    2 0.1 3 000 300 38 000 1.48 1.51
    下载: 导出CSV
  • [1] Yoon J H, Lee B S, Oh Y J, et al. Effects of loading rate and temperature on J-R fracture resistance of an SA516-Gr. 70 steel for nuclear piping[J]. Int J Pres Ves Pip, 1999, 76(9): 663-670. doi: 10.1016/S0308-0161(99)00033-2
    [2] Ritchie R O, Server W L, Wullaert R A. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels[J]. Metall Trans A, 1979, 10(10): 1557-1570. doi: 10.1007/BF02812022
    [3] Barsom J M. Development of the AASHTO fracture toughness requirements for bridge steels[J]. Eng Fract Mech, 1975, 7(3): 605-618. http://www.sciencedirect.com/science/article/pii/0013794475900600
    [4] Kobayashi T, Yamada S. Evaluation of static and dynamic fracture toughness in ductile cast iron[J]. Metall Mater Trans A, 1994, 25(11): 2427-2436. doi: 10.1007/BF02648862
    [5] Joyce J A, Hacket E M. Dynamic J-R curve testing of a high strength steel using the multispecimen and key curve techniques[J]. ASTM Spec Tech Publ, 1986(905): 741-774. http://www.astm.org/DIGITAL_LIBRARY/STP/PAGES/STP17426S.htm
    [6] Luna S, Fernndez-sez J, Pérez-Castellanos J L, et al. An analysis of the static and dynamic fracture behaviour of a pipeline steel[J]. Int J Pres Vess Pip, 2000, 77(11): 691-696. doi: 10.1016/S0308-0161(00)00058-2
    [7] Tronskar J P, Mannan M A, Lai M O. Correlation between quasi-static and dynamic crack resistance curves[J]. Eng Fract Mech, 2003, 70(12): 1527-1542. doi: 10.1016/S0013-7944(02)00148-0
    [8] Turner C E. The umbiquitous η factor[J]. ASTM Spec Tech Publ, 1980(700): 314-337.
    [9] ASTM. E1820-99. Standard Test Method for Measurement of Fracture Toughness[S]. 1999.
    [10] 李志安.压力容器断裂理论与缺陷评定[M].大连: 大连理工大学出版社, 1994: 73-76.

    Li Z A. Pressure Vessel Fracture Mechanics and Defect Assessment[M]. Dalian: Dalian University of Technology Press, 1994: 73-76. (in Chinese)
    [11] Clarke G A, Landes J D. Evaluation of the J-integral for the compact specimen[J]. J Test Eval, 1979, 7(5): 264-269. doi: 10.1520/JTE10222J
    [12] Sumpter J D G.Jc determination for shallow notch welded bend specimens[J]. Fatigue Fract Eng Mater Struct, 1987, 10(6): 479-493. doi: 10.1111/j.1460-2695.1987.tb00498.x
    [13] Zhu X K, Joyce J A. J-resistance curve testing of HY80 steel using SE(B)specimens and normalization method[J]. Eng Fract Mech, 2007, 74: 2263-2281. doi: 10.1016/j.engfracmech.2006.10.018
    [14] Chaouadi R. An energy-based crack extension formulation for crack resistance characterization of ductile materials[J]. J Test Eval, 2004, 32(6): 469-475. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b53861e5969098c96c5068c946929cb8
    [15] Kobayashi T, Yamanoto I, Niionomi M. Introduction of a new dynamic fracture toughness evaluation system[J]. J Test Eval, 1993, 21(3): 145-153. doi: 10.1520/JTE11763J
    [16] Schindler H J. Estimation of the dynamic J-R curve from a single impact bending test[C]//Petit J, de Fouquet J, Henaff G, et al. ECF 11-Mechanisms and Mechanics of Damage and Failure(Vol. Ⅱ). UK: EMAS, 1996: 2007-2012.
    [17] Sathyanarayanan S, Sasikala G, Ray S K. Evaluation of dynamic fracture toughness of cold worked 9Cr-1Mo steel[J]. Int J Pres Ves Pip, 2004, 81(4): 19-425. http://www.sciencedirect.com/science/article/pii/S030801610400078X
    [18] Sreenivasan P R, Shastry C G, Mathew M D, et al. Dynamic fracture toughness and Charpy transition properties of a service-exposed 2.25Cr-1Mo reheater header pipe[J]. J Eng Mater Technol, 2003, 125: 227-233. doi: 10.1115/1.1543969
    [19] Koppenhoefer K C, Dodds R H. Ductile crack growth in pre-cracked CVN specimens: Numerical studies[J]. Nucl Eng Des, 1998, 180: 221-241. doi: 10.1016/S0029-5493(97)00218-5
    [20] Biswas P, Narasimhan R. A numerical study of constraint effects on dynamic ductile crack initiation[J]. Mech Mater, 2002, 45: 577-592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=17bb7e14baa93a76b2fe27d3a9c25188
    [21] Xia L, Shih C F. Ductile crack growth-I. A numerical study using computational cells with microstructurally based length scales[J]. J Mech Phys Solids, 1995, 43: 233-259. doi: 10.1016/0022-5096(94)00064-C
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  6892
  • HTML全文浏览量:  2090
  • PDF下载量:  274
出版历程
  • 收稿日期:  2012-09-21
  • 修回日期:  2012-11-20

目录

    /

    返回文章
    返回