小分子液体的高温布里渊散射研究

马春丽 武晓鑫 黄凤仙 李敏 王晓霞 周强 李芳菲 崔启良

马春丽, 武晓鑫, 黄凤仙, 李敏, 王晓霞, 周强, 李芳菲, 崔启良. 小分子液体的高温布里渊散射研究[J]. 高压物理学报, 2015, 29(1): 35-41. doi: 10.11858/gywlxb.2015.01.006
引用本文: 马春丽, 武晓鑫, 黄凤仙, 李敏, 王晓霞, 周强, 李芳菲, 崔启良. 小分子液体的高温布里渊散射研究[J]. 高压物理学报, 2015, 29(1): 35-41. doi: 10.11858/gywlxb.2015.01.006
MA Chun-Li, WU Xiao-Xin, HUANG Feng-Xian, LI Min, WANG Xiao-Xia, ZHOU Qiang, LI Fang-Fei, CUI Qi-Liang. Brillouin Scattering Study on Molecular Liquid under High Pressure and High Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 35-41. doi: 10.11858/gywlxb.2015.01.006
Citation: MA Chun-Li, WU Xiao-Xin, HUANG Feng-Xian, LI Min, WANG Xiao-Xia, ZHOU Qiang, LI Fang-Fei, CUI Qi-Liang. Brillouin Scattering Study on Molecular Liquid under High Pressure and High Temperature Conditions[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 35-41. doi: 10.11858/gywlxb.2015.01.006

小分子液体的高温布里渊散射研究

doi: 10.11858/gywlxb.2015.01.006
基金项目: 高等学校博士学科点专项科研基金(20100061120093)
详细信息
    作者简介:

    马春丽(1986—),女,博士,主要从事高压相变、高压拉曼光谱等研究.E-mail:mcl.1314@163.com

    通讯作者:

    李芳菲(1981—),女,副教授,主要从事高温高压相变、高温高压光谱等研究.E-mail: lifangfei@jlu.edu.cn

  • 中图分类号: O521.21

Brillouin Scattering Study on Molecular Liquid under High Pressure and High Temperature Conditions

  • 摘要: 利用金刚石对顶砧技术,采用180°背向散射和60°前向对称散射两种几何配置, 对水、氨、二水合氨和甲烷等含氢小分子液体进行了高温高压布里渊散射研究,计算了在室温(296 K)和高温(410 K)下的声速,比较了不同小分子液体中的声速及绝热体弹模量随压力的变化关系。在等温条件下,各体系中声速随着压力的增加逐渐增加;在相同温度下,甲烷液体的声速随着压力增加的速率明显高于水、氨及二水合氨液体;在相同的温度和压力条件下,水、氨及二水合氨液体的体弹模量明显高于甲烷液体的体弹模量,表明氢键的存在对于小分子液体弹性具有较大影响。二水合氨的体弹模量斜率在1.5 GPa左右发生改变,表明液体结构可能发生了改变,并分析了氢键对该体系弹性性质的影响。研究有助于理解其他含氢小分子液体中压力和温度诱导的分子结构变化。

     

  • 图  室温下60°前向对称散射几何配置测得的液态二水合氨布里渊散射谱

    Figure  1.  Brillouin scattering spectra of ammonia dihydrate in 60° scattering geometry under room temperature

    图  在410 K时,液态甲烷的布里渊散射谱:(a) 60°前向对称散射几何配置,(b) 180°背向散射几何配置

    Figure  2.  Brillouin scattering spectra of methane in 60° (a) and 180° (b) scattering geometry under 410 K

    R is the peak of Rayleigh scattering, D refers to diamond peak; νL indicates the longitudinal signal of liquid methane; νB indicates the weak backscattering signal; νS indicates the longitudinal signal of solid methane. Solidification of liquid methane was observed at 2.7 GPa under microscope.

    图  室温(296 K)与高温(410 K)下液态水、氨、二水合氨和甲烷的声速随着压力的变化关系

    Figure  3.  Pressure dependence of the acoustic velocity of water (H2O), ammonia (NH3), ammonia dihydrate (NH3·2H2O)and methane (CH4) under room temperature (296 K) and high temperature (410 K)

    图  室温(296 K)与高温(410 K)下液态水、氨、二水合氨和甲烷绝热体弹模量随着压力的变化关系

    Figure  4.  Pressure dependence of the acoustic bulk modulus of H2O, NH3, NH3·2H2O, CH4under room temperature (296 K) and high temperature (410 K)

    表  1  不同温度下液态水、氨、二水合氨和甲烷的常压体弹模量(B0)、体模量随着压力变化的一阶导数(dB/dp)

    Table  1.   The acoustic bulk modulus of H2O, NH3, NH3·2H2O and CH4 at ambient pressure and pressure dependence under different temperatures

    Mater 296 K 410 K
    B0/(GPa) dB/dp B0/(GPa) dB/dp
    H2O 2.26(04) 6.92(09) 2.73(11) 6.13(07)
    NH3 2.09(05) 6.67(11) 1.67(10) 5.94(10)
    NH3·2H2O[24] 1.50(52) 6.83(29) 5.14(40) 4.41(36)
    CH4 0.24(12) 5.09(12) 0.00(05) 4.80(03)
    下载: 导出CSV
  • [1] Cavazzoni C, Chiarotti G L, Scandolo S, et al. Superionic and metallic states of water and ammonia at giant planet conditions[J]. Science, 1999, 283(5398): 44-46. doi: 10.1126/science.283.5398.44
    [2] Hubbard W B. Interiors of the giant planets[J]. Science, 1981, 214(4517): 145-149. doi: 10.1126/science.214.4517.145
    [3] Griffiths G I G, Fortes A D, Pickard C J, et al. Crystal structure of ammonia dihydrate(Ⅱ)[J]. J Chem Phys, 2012, 136(17): 174512. doi: 10.1063/1.4707930
    [4] Fortes A D, Suard E, Lemée-Cailleau M H, et al. Equation of state and phase transition of deuterated ammonia monohydrate(ND3·D2O)measured by high-resolution neutron powder diffraction up to 500 MPa[J]. J Chem Phys, 2009, 131(15): 154503. doi: 10.1063/1.3245858
    [5] Fortes A D, Suard E, Lemée-Cailleau M H, et al. Crystal structure of ammonia monohydrate phase Ⅱ[J]. J Am Chem Soc, 2009, 131(37): 13508-13515. doi: 10.1021/ja9052569
    [6] Fortes A D, Wood I G, Alfredsson M, et al. The high-pressure phase diagram of ammonia dihydrate[J]. High Press Res, 2007, 27(2): 201-212. doi: 10.1080/08957950701265029
    [7] Fortes A D, Wood I G, Brodholt J P, et al. A high-resolution neutron powder diffraction study of ammonia dihydrate(ND3·2D2O)phase Ⅰ[J]. J Chem Phys, 2003, 119(20): 10806-10813. doi: 10.1063/1.1619371
    [8] Fortes A D, Brodholt J P, Wood I G, et al. Ab initio simulation of ammonia monohydrate(NH3·H2O)and ammonium hydroxide(NH4OH)[J]. J Chem Phys, 2001, 115(15): 7006-7014. doi: 10.1063/1.1398104
    [9] Loveday J S, Nelmes R J. Ammonia monohydrate(Ⅵ): A hydrogen-bonded molecular alloy[J]. Phys Rev Lett, 1999, 83(21): 4329-4332. doi: 10.1103/PhysRevLett.83.4329
    [10] Bertie J E, Shehata M R. Ammonia dihydrate: Preparation, X-ray powder diffraction pattern and infrared spectrum of NH3·2H2O at 100 K[J]. J Chem Phys, 1984, 81(1): 27-30. doi: 10.1063/1.447381
    [11] Li F F, Cui Q L, He Z, et al. High pressure-temperature brillouin study of liquid water: Evidence of the structural transition from low-density water to high-density water[J]. J Chem Phys, 2005, 123(17): 174511. doi: 10.1063/1.2102888
    [12] Mao H K, Xu J, Bell P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions[J]. J Geophys Res, 1986, 91(B5): 4673-4676. doi: 10.1029/JB091iB05p04673
    [13] Ragan D D, Gustavsen R, Schiferl D. Calibration of the ruby R1 and R2 fluorescence shifts as a function of temperature from 0 to 600 K[J]. J Appl Phys, 1992, 72(12): 5539-5544. doi: 10.1063/1.351951
    [14] Li F F, Li M, Cui Q L, et al. The velocity, refractive index, and equation of state of liquid ammonia at high temperatures and high pressures[J]. J Chem Phys, 2009, 131(13): 134502. doi: 10.1063/1.3223549
    [15] Li M, Li F F, Gao W, et al. Brillouin scattering study of liquid methane under high pressures and high temperatures[J]. J Chem Phys, 2010, 133(4): 044503. doi: 10.1063/1.3449141
    [16] Sandercock J R. Brillouin scattering study of SbSI using a double-passed, stabilised scanning interferometer[J]. Opt Commun, 1970, 2(2): 73-76. doi: 10.1016/0030-4018(70)90047-7
    [17] Polian A. Brillouin scattering at high pressure: An overview[J]. J Raman Spectrosc, 2003, 34(7/8): 633-637. doi: 10.1002/jrs.1031/epdf
    [18] Whitfield C H, Brody E M, Bassett W A. Elastic moduli of NaCl by brillouin scattering at high pressure in a diamond anvil cell[J]. Rev Sci Instrum, 1976, 47(8): 942-947. doi: 10.1063/1.1134778
    [19] Zouboulis E S, Grimsditch M, Ramdas A K, et al. Temperature dependence of the elastic moduli of diamond: A Brillouin-scattering study[J]. Phys Rev B, 1998, 57(5): 2889-2896. doi: 10.1103/PhysRevB.57.2889
    [20] Maisano G, Migliardo P, Aliotta F, et al. Evidence of anomalous acoustic behavior from brillouin scattering in supercooled water[J]. Phys Rev Lett, 1984, 52(12): 1025-1028. doi: 10.1103/PhysRevLett.52.1025
    [21] Maisano G, Majolino D, Mallamace F, et al. Landau-Placzek ratio in normal and supercooled water[J]. Mol Phys, 1986, 57(5): 1083-1097. doi: 10.1080/00268978600100791
    [22] Magazu S, Maisano G, Majolino D, et al. Relaxation process in deeply supercooled water by Mandelstam-Brillouin scattering[J]. J Phys Chem, 1989, 93(2): 942-947. doi: 10.1021/j100339a077
    [23] Croft S K, Lunine J I, Kargel J S. Equation of state of ammonia-water liquid: Derivation and planetological applications[J]. Icarus, 1988, 73(2): 279-293. doi: 10.1016/0019-1035(88)90098-X
    [24] Ma C L, Wu X X, Huang F X, et al. The acoustic velocity, refractive index, and equation of state of liquid ammonia dihydrate under high pressure and high temperature[J]. J Chem Phys, 2012, 137(10): 104504. doi: 10.1063/1.4751944
    [25] Kume T, Daimon M, Sasaki S, et al. High-pressure elastic properties of liquid and solid ammonia[J]. Phys Rev B, 1998, 57(21): 13347-13350. doi: 10.1103/PhysRevB.57.13347
    [26] Goharshadi E K, Boushehri A. Compressibility of molecular liquids and liquid mixtures[J]. Aust J Chem, 1996, 49(4): 521-522. doi: 10.1071/CH9960521
    [27] Garai J, Laugier A. The temperature dependence of the isothermal bulk modulus at 1 bar pressure[J]. J Appl Phys, 2007, 101(2): 023514. doi: 10.1063/1.2424535
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  6435
  • HTML全文浏览量:  2221
  • PDF下载量:  314
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-07-28

目录

    /

    返回文章
    返回