旋转爆轰流场的三维结构及其径向变化的数值研究

张旭东 范宝春 归明月

张旭东, 范宝春, 归明月. 旋转爆轰流场的三维结构及其径向变化的数值研究[J]. 高压物理学报, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005
引用本文: 张旭东, 范宝春, 归明月. 旋转爆轰流场的三维结构及其径向变化的数值研究[J]. 高压物理学报, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005
ZHANG Xu-Dong, FAN Bao-Chun, GUI Ming-Yue. Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005
Citation: ZHANG Xu-Dong, FAN Bao-Chun, GUI Ming-Yue. Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 29-34. doi: 10.11858/gywlxb.2015.01.005

旋转爆轰流场的三维结构及其径向变化的数值研究

doi: 10.11858/gywlxb.2015.01.005
基金项目: 国家自然科学基金(10872096)
详细信息
    作者简介:

    张旭东(1983—),男,博士,主要从事爆轰推进技术研究.E-mail:zxdhtg@126.com

    通讯作者:

    范宝春(1945—),男,教授,博士生导师,主要从事燃烧、爆轰相关理论研究.E-mail: bcfan@mail.njust.edu.cn

  • 中图分类号: O381

Three-Dimensional Numerical Investigation on Structure and Radial Variation of Rotating Detonation Flow Field

  • 摘要: 基于带化学反应的三维Euler方程, 采用8组元和24个可逆化学反应的基元反应模型,对等当量比的气相氢气/氧气系统在圆环形燃烧室内的旋转爆轰进行了数值模拟。结果表明,子爆轰波、斜激波和滑移线组成了旋转爆轰波的基本三维结构。由于旋转爆轰燃烧室特殊的几何构型,即内壁的发散和外壁的收敛,使内壁面附近的爆轰强度要小于外壁面附近的爆轰强度,最终实现旋转爆轰波在燃烧室内的自持传播。

     

  • 图  旋转爆轰的环形燃烧室[1]

    Figure  1.  Schematic of flow field in a rotating detonation engine[1]

    图  旋转爆轰燃烧室简图

    Figure  2.  Schematic of RDE combustion

    图  旋转爆轰的扫描照片

    Figure  3.  Streak pictures of a rotating detonation

    图  旋转爆轰的三维流场

    Figure  4.  Three-dimensional flow field of the rotating detonation

    图  旋转爆轰波的二维流场结构(x=0.7l0)

    Figure  5.  Two-dimensional steady flow field structure of the rotating detonation

    图  t=917 μs时刻旋转爆轰燃烧室流场的温度分布云图

    Figure  6.  Temperature contour of the rotating detonation at t=917 μs

    图  t=917 μs时刻旋转爆轰压力场的剖面图

    Figure  7.  Pressure distribution on inner, middle and outer laterals at t=917 μs

    图  t=917 μs时刻旋转爆轰流场的温度分布图

    Figure  8.  Temperature distribution on inner, middle and outer laterals at t=917 μs

    图  旋转爆轰压力的时程曲线(y=0.6l0z=0.006l0)

    Figure  9.  Pressure history of the rotating detonation(y=0.6l0, z=0.006l0)

  • [1] Pan Z H, Fan B C, Zhang X D, et al. Wavelet pattern and self-sustained mechanism of gaseous detonation rotating in a coaxial cylinder[J]. Combust Flame, 2011, 158(11): 2220-2228. doi: 10.1016/j.combustflame.2011.03.016
    [2] Nicholls J A, Dabora E K, Gealler R L. Studies in connection with stabilized gaseous detonations waves[C]//Seventh Symposium(International)on Combustion. London: Butterworths Scientific Publications, 1959: 766-772.
    [3] Voitsekhovskii B V. Stationary detonation[J]. Doklady Akademii Nauk SSSR, 1959, 129(6): 1254-1256.
    [4] Bykovskii F A, Vedernikov E F. Continuous detonation combustion of an annular gas-mixture layer[J]. Combustion, Explosion, and Shock Waves, 1996, 32(5): 489-491. doi: 10.1007/BF01998570
    [5] Bykovskii F A, Zhdan S A, Vedernikov E F. Continuous spin detonation[J]. J Propul Power, 2006, 22(6): 1204-1216. doi: 10.2514/1.17656
    [6] Bykovskii F A, Zhdan S A, Vedernikov E F. Realization and modeling of continuous spin detonation of a hydrogen-oxygen mixture in flow-type combustors[J]. Combustion, Explosion, and Shock Waves, 2009, 45(6): 716-728. doi: 10.1007/s10573-009-0089-2
    [7] Daniau E, Falempin F, Zhdan S. Pulsed and rotating detonation propulsion systems: First step toward operational engines, AIAA 2005-3233[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2005.
    [8] Wolanski P, Kindracki J, Fujiwara T. An experimental study of small rotating detonation engine[C]//Roy G, Frolov S, Sinibaldi J. Pulsed and Continuous Detonations. Moscow: Torus Press, 2006: 332-338.
    [9] Kindracki J, Wolanski P, Gut Z. Experimental research on the rotating detonation in gaseous fuels-oxygen mixtures[J]. Shock Waves, 2011, 21(2): 75-84. doi: 10.1007/s00193-011-0298-y
    [10] Zhdan S A, Bykovskii F A, Vedernikov E F. Mathematical modeling of a rotating detonation wave in a hydrogen-oxygen mixture[J]. Combustion, Explosion and Shock Waves, 2007, 43(4): 449-459. doi: 10.1007/s10573-007-0061-y
    [11] Davidenko D M, Gökalp I, Kudryavtsev A N. Numerical study of continuous detonation wave rocket engine, AIAA 2008-2680[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2008.
    [12] Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1): 1-10. doi: 10.1007/s00193-008-0178-2
    [13] Yi T H, Turangan C, Lou J. A three-dimensional numerical study of rotational detonation in an annular chamber, AIAA 2009-634[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2009.
    [14] Yi T H, Lou J, Turangan C. Effect of nozzle shapes on the performance of continuously rotating detonation engine, AIAA 2010-152[R]. Reston, VA: American Institute of Aeronautics and Astronautics, 2010.
    [15] Schwer D, Kailasanath K. Numerical investigation of the physics of rotating-detonation-engines[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2195-2202. doi: 10.1016/j.proci.2010.07.050
    [16] Uemura Y, Hayashi A K, Asahara M, et al. Transverse wave generation mechanism in rotating detonation[J]. Proceedings of the Combustion Institute, 2013, 34(2): 1981-1989. doi: 10.1016/j.proci.2012.06.184
    [17] Zhang X D, Fan B C, Gui M Y, et al. Numerical study on three-dimensional flow field of continuously rotating detonation in a toroidal chamber[J]. Acta Mech Sin, 2012, 28(1): 66-72. doi: 10.1007/s10409-012-0005-y
    [18] Zhong X L. Additive semi-implicit Runge-Kutta methods for computing high-speed nonequilibrium reactive flows[J]. J Comput Phys, 1996, 128(1): 19-31. doi: 10.1006/jcph.1996.0193
    [19] Leveque R J. Wave propagation algorithms for multidimensional hyperbolic systems[J]. J Comput Phys, 1997, 131(2): 327-353. http://dl.acm.org/citation.cfm?id=254440
    [20] Radhakrishnan K, Hindmarsh A C. Description and use of LSODE, the livermore solver for ordinary differential equations, UCRL-ID-113855[R]. Livermore, CA: Lawrence Livermore National Laboratory, 1993.
    [21] Burks T L, Oran E S. A computational study of the chemical kinetics of hydrogen combustion, NRL Memorandum Report 4446[R]. Washington, DC: Naval Research Laboratory, 1981.
    [22] Gamezo V N, Desbordes D, Oran E S. Two-dimensional reactive flow dynamics in cellular detonation waves[J]. Shock Waves, 1999, 9(1): 11-17. doi: 10.1007/s001930050134
  • 加载中
图(9)
计量
  • 文章访问数:  6430
  • HTML全文浏览量:  2055
  • PDF下载量:  260
出版历程
  • 收稿日期:  2013-08-05

目录

    /

    返回文章
    返回