Ti-Cu-W体系Pillow飞片加载铋熔化再凝固过程计算分析

柏劲松 于继东 戴诚达 王宇 刘坤 罗国强 沈强 谭华 吴强 张联盟

柏劲松, 于继东, 戴诚达, 王宇, 刘坤, 罗国强, 沈强, 谭华, 吴强, 张联盟. Ti-Cu-W体系Pillow飞片加载铋熔化再凝固过程计算分析[J]. 高压物理学报, 2015, 29(1): 15-22. doi: 10.11858/gywlxb.2015.01.003
引用本文: 柏劲松, 于继东, 戴诚达, 王宇, 刘坤, 罗国强, 沈强, 谭华, 吴强, 张联盟. Ti-Cu-W体系Pillow飞片加载铋熔化再凝固过程计算分析[J]. 高压物理学报, 2015, 29(1): 15-22. doi: 10.11858/gywlxb.2015.01.003
BAI Jing-Song, YU Ji-Dong, DAI Cheng-Da, WANG Yu, LIU Kun, LUO Guo-Qiang, SHEN Qiang, TAN Hua, WU Qiang, ZHANG Lian-Meng. Calculation Analysis of the Impact Melting and Resolidification Process for the Bismuth Using the Ti-Cu-W Pillow Flyer[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 15-22. doi: 10.11858/gywlxb.2015.01.003
Citation: BAI Jing-Song, YU Ji-Dong, DAI Cheng-Da, WANG Yu, LIU Kun, LUO Guo-Qiang, SHEN Qiang, TAN Hua, WU Qiang, ZHANG Lian-Meng. Calculation Analysis of the Impact Melting and Resolidification Process for the Bismuth Using the Ti-Cu-W Pillow Flyer[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 15-22. doi: 10.11858/gywlxb.2015.01.003

Ti-Cu-W体系Pillow飞片加载铋熔化再凝固过程计算分析

doi: 10.11858/gywlxb.2015.01.003
基金项目: 国家自然科学基金(11072228);国防科学技术工业项目(K020110-1/3/6);中国工程物理研究院科学技术发展基金(2011B0202005,2011A0201002)
详细信息
    作者简介:

    柏劲松(1968—),男,博士,研究员,主要从事计算流体力学、计算爆炸力学等方面的理论与数值模拟研究.E-mail:bjsong_mail@21cn.com

    通讯作者:

    王宇(1988-), 男, 硕士, 研究实习员, 主要从事计算流体力学理论与数值模拟研究.E-mail:mishiwufeng@126.com

  • 中图分类号: O521.23

Calculation Analysis of the Impact Melting and Resolidification Process for the Bismuth Using the Ti-Cu-W Pillow Flyer

  • 摘要: 采用数值计算设计了Ti-Cu-W材料体系Pillow飞片,实现金属铋样品的冲击加载和准等熵加载,并通过实验研究铋的冲击熔化再凝固这一复杂的物理过程,实验获得的速度波剖面结果与数值模拟结果基本一致。还建立了金属铋的包含5个固相和1个液相的完全物态方程,计算相图的三相点以及高压区的Hugoniot线与实验数据吻合较好,计算还获得了冲击加载再凝固实验中的温度信息和相变信息。通过计算分析和对实验数据的解读,认为Ti-Cu-W材料体系Pillow飞片加载可以用于铋的冲击熔化再凝固复杂物理过程研究,为实验探索研究建立了适用的研究方法和有效的技术手段。

     

  • 图  计算得到的p-T相图

    Figure  1.  The calculated p-T phase diagram

    图  高压熔化线

    Figure  2.  The high pressure melt curve

    图  固Ⅴ相与液相的Hugoniot线

    Figure  3.  Hugoniot curves of solid Ⅴ phase and liquid phase

    图  计算D-u曲线与实验数据的对比

    Figure  4.  Comparison of D-u curve between calculation and experiment

    图  Pillow飞片各层密度随厚度分布

    Figure  5.  Density profiles of the designed and fabricated flyers

    图  实验装置原理图

    Figure  6.  The schematic of experimental setup

    图  铋与LiF窗口界面速度剖面的实验、数值模拟和设计计算的对比

    Figure  7.  Comparisons of velocity profiles at the bismuth and LiF interface among experiment, numerical simulation and design calculation

    图  铋的两种状态方程计算结果及其与实验的比较

    Figure  8.  Simulation results of the bismuth with two different equations of state, compared with experiment data

    图  计算给出的铋在p-T图中经历的热力学路径

    Figure  9.  The calculated thermodynamic path of the bismuth in the p-T phase diagram

    图  10  计算给出的液相质量分数变化

    Figure  10.  The calculated mass fraction variation of the liquid phase

    表  1  相图三相点对比

    Table  1.   Comparisons of triple point in phase diagram

    Phase Ref.[13] This work
    T/(K) p/(GPa) T/(K) p/(GPa)
    Melting point 544 Zero 545 Zero
    Ⅰ-Ⅱ-L 465 1.65 466 1.66
    Ⅱ-Ⅳ-L 464 2.10 464 2.38
    Ⅱ-Ⅲ-Ⅳ 455 2.15 454 2.40
    Ⅳ-Ⅴ-L 569 3.80 568 3.72
    Ⅲ-Ⅳ-Ⅴ 448 5.40 448 5.45
    下载: 导出CSV

    表  2  状态方程参数表

    Table  2.   Parameters for equation of state

    Phase F0
    /(Pa·m3/g)
    S0
    /[Pa·m3/(g·K)]
    T0
    /(K)
    p0
    /(GPa)
    v0
    /(cm3/g)
    Cv
    /[Pa·m3/(g·K)]
    b
    /(g/cm3)
    K0
    /(GPa)
    a1 a2 n
    0 0 300 0 0.102 0 0.122 6 10.3 32.17 3.5 8.5
    7.47 0.698 4 456 1.7 0.093 2 0.120 0 20.0 60.20
    19.29 0.725 3 456 1.7 0.088 2 0.084 0 36.0 75.25
    19.30 0.773 0 456 1.7 0.088 2 0.084 0 36.0 75.25
    41.02 0.800 3 447 5.3 0.082 9 0.108 0 23.0 78.26 3.9
    Liquid -9.93 1.630 0 544 0 0.099 6 0.133 0 19.2 25.00 5.8
    下载: 导出CSV

    表  3  设计和实验研制的14层Ti-Cu-W体系飞片的各层组成成分

    Table  3.   Components of each layer for designed and fabricated Ti-Cu-W flyer

    Material
    system
    Tape Ti/Cu (%) ρ/(g/cm3) Z g/(cm2·μs)
    Design Exp. Design Exp. Design Exp.
    Cu-W 1 Cu/20.0 Cu/21.08 15.606 15.450 5.800 5.733
    2 Cu/40.0 Cu/38.25 13.145 13.329 4.832 4.898
    3 Cu/58.0 Cu/56.47 11.512 11.635 4.279 4.319
    4 Cu/80.0 Cu/78.74 9.994 10.070 3.806 3.829
    5 Cu/100.0 Cu/98.90 8.924 8.977 3.489 3.505
    Ti-Cu 6 Ti/3.0 Ti/2.67 8.659 8.688 3.413 3.421
    7 Ti/10.0 Ti/10.20 8.099 8.084 3.253 3.249
    8 Ti/18.0 Ti/18.82 7.541 7.488 3.096 3.081
    9 Ti/25.0 Ti/26.36 7.112 7.034 2.975 2.953
    10 Ti/30.0 Ti/31.74 6.835 6.743 2.897 2.871
    11 Ti/33.0 Ti/34.98 6.678 6.579 2.853 2.825
    12 Ti/36.0 Ti/38.20 6.529 6.424 2.811 2.781
    13 Ti/39.0 Ti/41.44 6.386 6.274 2.771 2.739
    14 Ti/42.0 Ti/44.67 6.249 6.133 2.732 2.699
    下载: 导出CSV
  • [1] Nguyen J H, Orlikowski D, Streitz F H, et al. High-pressure tailored compression: Controlled thermodynamic paths[J]. J Appl Phys, 2006, 100(2): 023508. doi: 10.1063/1.2214209
    [2] Nguyen J H, Orlikowski D, Streitz F H, et al. Specifically prescribed dynamic thermodynamic paths and resolidification experiments[C]//Furnish M D, Gupta Y M, Forbes J W. Shock Compression of Condensed Matter-2003. New York: AIP, 2004: 1225-1230.
    [3] Martin L P, Nguyen J H. Fabrication and characterization of graded impedance gas gun impactors from tape cast metal powders, UCRL-JRNL-217359[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2005.
    [4] Martin L P, Orlikowski D, Nguyen J H. Fabrication and characterization of graded impedance impactors for gas gun experiments from tape cast metal powders[J]. Mat Sci Eng A, 2006, 427(1): 83-91. https://www.sciencedirect.com/science/article/pii/S0921509306004709
    [5] Martin L P, Patterson J R, Orlikowski D, et al. Application of tape-cast graded impedance impactors for light-gas gun experiments[J]. J Appl Phys, 2007, 102(2): 023507. doi: 10.1063/1.2756058
    [6] 华劲松, 经福谦, 龚自正, 等.准等熵压缩的数值模拟[J].高压物理学报, 2000, 14(3): 195-202.

    Hua J S, Jing F Q, Gong Z Z, et al. Study of numerical simulation for quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 195-202. (in Chinese)
    [7] 沈强, 王传彬, 张联盟, 等.为实现准等熵压缩的波阻抗梯度飞片的实验研究[J].物理学报, 2002, 51(8): 1759-1762.

    Shen Q, Wang C B, Zhang L M, et al. A study on generating quasi-isentropic compression via graded impedance flyer[J]. Acta Phys Sin, 2002, 51(8): 1759-1762. (in Chinese)
    [8] 柏劲松, 罗国强, 黄娇凤, 等. Pillow飞片气炮加载实验的数值模拟研究[J].高压物理学报, 2011, 25(5): 390-394.

    Bai J S, Luo G Q, Huang J F, et al. Numerical simulation of the gas gun experiment with Pillow impactor loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 390-394. (in Chinese)
    [9] 柏劲松, 罗国强, 王翔, 等. Mg-W体系密度梯度飞片复杂加载实验的计算分析[J].力学学报, 2010, 42(6): 1068-1073.

    Bai J S, Luo G Q, Wang X, et al. Calculation and analysis of the Mg-W GDI complex loading experiment[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(6): 1068-1073. (in Chinese)
    [10] 柏劲松, 沈强, 唐蜜, 等. W-Mo-Ti-Mg体系阻抗梯度飞片无冲击驱动过程数值计算[J].振动与冲击, 2010, 29(6): 72-75.

    Bai J S, Shen Q, Tang M, et al. Numerical analysis on complex loadings and shockless compressions of the W-Mo-Ti-Mg graded impedance impactor[J]. Journal of Vibration and Shock, 2010, 29(6): 72-75. (in Chinese)
    [11] Luo G Q, Bai J S, Tan H, et al. Characterizations of Mg-W system graded-density materials for complex loading-unloading light-gas gun experiments[J]. Metall Mater Trans A, 2010, 41(9): 2389-2395. doi: 10.1007/s11661-010-0309-0
    [12] 柏劲松, 罗国强, 唐蜜, 等.冲击加载-准等熵加载过程的密度梯度飞片计算设计[J].高压物理学报, 2009, 23(3): 173-180.

    Bai J S, Luo G Q, Tang M, et al. Computational design of graded impactors for shock loading and quasi-isentropic compression[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 173-180. (in Chinese)
    [13] Tonkov E Y, Pomyatovsky E G. Phase Transformations of Elements under High Pressure[M]. Boca Raton, FL: CRC Press, 2005: 148-157.
    [14] Pélissier J L, Wetta N. A model potential approach for bismuth(Ⅰ). Densification and melting curve calculation[J]. Physica A, 2001, 289(3): 459-478. https://www.sciencedirect.com/science/article/pii/S0378437100005148
    [15] Pélissier J L, Partouche-Sebban D. Pyrometry measurements on shock-heated bismuth using PMMA and sapphire windows[J]. Physica B, 2005, 364(1): 14-28. https://www.sciencedirect.com/science/article/pii/S0921452605006332
    [16] Partouche S D, Pélissier J L, Anderson W W, et al. Investigation of shock-induced light from sapphire for use in pyrometry studies[J]. Physica B, 2005, 364(1): 1-13. https://www.sciencedirect.com/science/article/pii/S0921452605005557
    [17] Johnson J N, Hayes D B, Asay J R. Equations of state and shock-induced transformations in solid Ⅰ-solid Ⅱ-liquid bismuth[J]. J Phys Chem Solids, 1974, 35(4): 501-515. doi: 10.1016/S0022-3697(74)80004-1
    [18] Kane J O, Smith R F. Modeling non-equilibrium phase transitions in isentropically compressed Bi[C]//Furnish M D, Elert M L, Russell Th P, et al. Shock Compression of Condensed Matter-2005. New York: AIP, 2006: 244.
    [19] Marsh S P. LASL Shock Hugoniot Data[Z]. Berkeley, CA: University of California Press, 1980: 23.
    [20] Walsh J M, Rice M H, McQeen R G, et al. Shock-wave compressions of twenty-seven metals. Equations of state of metals[J]. Phys Rev, 1957, 108(2): 196. doi: 10.1103/PhysRev.108.196
    [21] Hayes D B. Wave propagation in a condensed medium with N transforming phases: Application to solidⅠ-solid Ⅱ-liquid bismuth[J]. J Appl Phys, 1975, 46(8): 3438-3443. doi: 10.1063/1.322065
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  6667
  • HTML全文浏览量:  2198
  • PDF下载量:  153
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-09-05

目录

    /

    返回文章
    返回