液氘单次冲击压缩的QMC模拟研究

李名锐 周刚 李志康 耿宝刚 范如玉 赵南

李名锐, 周刚, 李志康, 耿宝刚, 范如玉, 赵南. 液氘单次冲击压缩的QMC模拟研究[J]. 高压物理学报, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001
引用本文: 李名锐, 周刚, 李志康, 耿宝刚, 范如玉, 赵南. 液氘单次冲击压缩的QMC模拟研究[J]. 高压物理学报, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001
LI Ming-Rui, ZHOU Gang, LI Zhi-Kang, GENG Bao-Gang, FAN Ru-Yu, ZHAO Nan. Single Shock Compression of Fluid Deuterium by QMC Simulation[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001
Citation: LI Ming-Rui, ZHOU Gang, LI Zhi-Kang, GENG Bao-Gang, FAN Ru-Yu, ZHAO Nan. Single Shock Compression of Fluid Deuterium by QMC Simulation[J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 1-8. doi: 10.11858/gywlxb.2015.01.001

液氘单次冲击压缩的QMC模拟研究

doi: 10.11858/gywlxb.2015.01.001
详细信息
    作者简介:

    李名锐(1983—),男,博士研究生,主要从事稠密液氢模拟研究.E-mail limrui_nint@163.com

    通讯作者:

    周刚(1964-), 男, 博士, 研究员, 主要从事爆炸力学与冲击力学研究.E-mail:gzhou@nint.ac.cn

  • 中图分类号: O521.2

Single Shock Compression of Fluid Deuterium by QMC Simulation

  • 摘要: 液氢在较宽压力与温度范围内具有复杂的物理特性,须从分子层面构建精确模型开展探索研究。利用电子-核耦合的CEIMC法模拟液氘单次冲击实验,分析了液氘冲击特性,当压力达50.3 GPa时液氘具有最大压缩率4.48,在110 GPa冲击压力附近未发现有压缩率急剧增大的迹象。选用合适的Al基板材料模型,建立了液氘单次压缩状态与实验条件间的关系,总结了单次冲击实验规律。得到的状态方程与现有动高压实验结果一致,也与经修正后的100 GPa以上压力的Omega激光实验值吻合,说明采用基于共振价键理论的波函数后,CEIMC法可应用于液氘的冲击模拟。

     

  • 图  液氘冲击Hugoniot曲线的实验及计算结果

    Figure  1.  Experimental and calculation results for deuterium Hugoniot curve

    图  轻气炮范围内液氘压力、温度与密度关系

    Figure  2.  Pressure and temperature versus density for deuterium in the gas gun range

    图  液氘压力、压缩率与冲击温度关系

    Figure  3.  Pressure and compression ratio versus temperature for D2

    图  液氘温度、压力及能量与压缩率关系

    Figure  4.  Temperature, pressure and energy versus compression ratio for D2

    图  液氘冲击波速度及压力与粒子速度关系

    Figure  5.  Shock velocity and pressure versus particle velocity in D2

    图  液氘粒子速度和冲击波速度与温度关系

    Figure  6.  Particle velocity and shock velocity versus temperature for D2

    图  液氘冲击波速度及压力与Al基板入射冲击波速度关系

    Figure  7.  Shock velocity and pressure in D2 versus incident shock velocity in Al

    图  液氘温度、能量、粒子速度及压缩率和Al基板粒子速度关系

    Figure  8.  Temperature, energy, particle velocity and compression ratio in D2 versus initial particle velocity in Al

  • [1] Morales M A, Pierleoni C, Ceperley M D. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations[J]. Phys Rev E, 2010, 81(2): 021202. http://www.ncbi.nlm.nih.gov/pubmed/20365556
    [2] Nellis W J, Weir S T, Mitchell A C. Minimum metallic conductivity of fluid hydrogen at 140 GPa(1.4 Mbar)[J]. Phys Rev B, 1998, 59(5): 3434-3449.
    [3] da Silva L B, Celliers P M, Collins G W, et al. Absolute equation of state measurements on shocked liquid deuterium up to 200 GPa(2 Mbar)[J]. Phys Rev Lett, 1997, 78(3): 483-486. doi: 10.1103/PhysRevLett.78.483
    [4] Collins G W, da Silva L B, Celliers P, et al. Measurements of the equation of state of deuterium at the fluid insulator-metal transition[J]. Science, 1998, 281(1): 1178-1181. http://www.ncbi.nlm.nih.gov/pubmed/9712579
    [5] Collins G W, Celliers P M, da Silva L B, et al. Equation of state measurements of hydrogen isotopes on Nova[J]. Phys Plasmas, 1998, 5(5): 1864-1869. doi: 10.1063/1.872857
    [6] Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Phys Rev B, 2009, 79(1): 014112. doi: 10.1103/PhysRevB.79.014112
    [7] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87(22): 225501. doi: 10.1103/PhysRevLett.87.225501
    [8] Knudson M D, Hanson D L, Bailey J E, et al. Principal hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69(14): 144209. doi: 10.1103/PhysRevB.69.144209
    [9] Belov S I, Boriskov G V, Bykov A I, et al. Shock compression of solid deuterium[J]. JETP Lett, 2002, 76(7): 433-435. doi: 10.1134/1.1528696
    [10] Boriskov G V, Bykov A I, Ilkaev R I, et al. Shock compression of liquid deuterium up to 109 GPa[J]. Phys Rev B, 2005, 71(9): 092104. doi: 10.1103/PhysRevB.71.092104
    [11] Grishechkin S K, Gruzdev S K, Gryaznov V K, et al. Experimental measurements of the compressibility, temperature, and light absorption in dense shock-compressed gaseous deuterium[J]. JETP Lett, 2004, 80(6): 398-404. doi: 10.1134/1.1830656
    [12] Kerley G I. Equation of state and phase diagram of dense hydrogen[J]. Phys Earth Planet Inter, 1972, 6(1): 78-82. http://www.sciencedirect.com/science/article/pii/0031920172900362
    [13] Ross M. Linear-mixing model for shock-compressed liquid deuterium[J]. Phys Rev B, 1997, 58(2): 669-677. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000058000002000669000001&idtype=cvips&gifs=Yes
    [14] Saumon D, Chabrier G. Fluid hydrogen at high density: Pressure ionization[J]. Phys Rev A, 1992, 46(4): 2084-2100. doi: 10.1103/PhysRevA.46.2084
    [15] 田春玲, 经福谦, 顾云军, 等.高温高密度氢(氘)的物态方程——离解效应研究[J].高压物理学报, 2007, 21(1): 8-14. http://d.wanfangdata.com.cn/Periodical/gywlxb200701002

    Tian C L, Jing F Q, Gu Y J, et al. Equation of state for fluid hydrogen and deuterium: Dissociation effects studies[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 8-14. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gywlxb200701002
    [16] Lenosky T J, Bickham S R, Kress J D, et al. Density-functional calculation of the Hugoniot of shocked liquid deuterium[J]. Phys Rev B, 2000, 61(1): 1-4. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000061000001000001000001&idtype=cvips&gifs=Yes
    [17] Desjarlais M P. Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing[J]. Phys Rev B, 2003, 68(6): 064204. doi: 10.1103/PhysRevB.68.064204
    [18] Lenosky T J, Kress J D, Collins L A. Molecular-dynamics modeling of the hugoniot of shocked liquid deuterium[J]. Phys Rev B, 1997, 56(9): 5164-5169. doi: 10.1103/PhysRevB.56.5164
    [19] Militzer B, Ceperley D M. Path integral monte carlo calculation of the deuterium hugoniot[J]. Phys Rev Lett, 2000, 85(9): 1890-1893. doi: 10.1103/PhysRevLett.85.1890
    [20] Casula M, Attaccalite C, Sorella S. Correlated geminal wave function for molecules: An efficient resonating valence bond approach[J]. J Chem Phys, 2004, 121(15): 7110-7126. doi: 10.1063/1.1794632
    [21] Holzmann M, Ceperley D M, Pierleoni C, et al. Backflow correlations for the electron gas and metallic hydrogen[J]. Phys Rev E, 2003, 68(4): 046707. doi: 10.1103/PhysRevE.68.046707
    [22] Silvera I F, Goldman V V. The isotropic intermolecular potential for H2 and D2 in the solid and gas phase[J]. J Chem Phys, 1987, 69(9): 4209-4213. doi: 10.1063/1.437103
    [23] Kolos W, Wolniewicz L. Potential-energy curves for the, and C1Πu states of the hydrogen molecule[J]. J Chem Phys, 1965, 43(7): 2429-2441. doi: 10.1063/1.1697142
    [24] Collins L A, Bickham S R, Kress J D, et al. Dynamical and optical properties of warm dense hydrogen[J]. Phys Rev B, 2001, 63(18): 184110. doi: 10.1103/PhysRevB.63.184110
    [25] Nellis W J, Mitchell A C, Thiel V M, et al. Equation of state data for molecular hydrogen and deuterium at shock pressures in the range 2-76 GPa(20-760 kbar)[J]. J Chem Phys, 1983, 79(3): 1480-1486. doi: 10.1063/1.445938
    [26] Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard[J]. Phys Rev Lett, 2009, 130(22): 225501. http://www.ncbi.nlm.nih.gov/pubmed/20366104
    [27] Bonev S A, Militzer B, Galli G. Ab initio simulations of dense liquid deuterium: Comparison with gas gun shock wave experiments[J]. Phys Rev B, 2004, 69(1): 014101. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000069000001014101000001&idtype=cvips&gifs=Yes
    [28] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
  • 加载中
图(8)
计量
  • 文章访问数:  6279
  • HTML全文浏览量:  2200
  • PDF下载量:  236
出版历程
  • 收稿日期:  2013-03-20
  • 修回日期:  2014-05-07

目录

    /

    返回文章
    返回