水分对高静压处理不同类型淀粉微观结构的影响

包亚莉 周海宇 任瑞林 刘培玲 宁红梅 王晓兰 李彦杰

包亚莉, 周海宇, 任瑞林, 刘培玲, 宁红梅, 王晓兰, 李彦杰. 水分对高静压处理不同类型淀粉微观结构的影响[J]. 高压物理学报, 2014, 28(6): 743-752. doi: 10.11858/gywlxb.2014.06.016
引用本文: 包亚莉, 周海宇, 任瑞林, 刘培玲, 宁红梅, 王晓兰, 李彦杰. 水分对高静压处理不同类型淀粉微观结构的影响[J]. 高压物理学报, 2014, 28(6): 743-752. doi: 10.11858/gywlxb.2014.06.016
BAO Ya-Li, ZHOU Hai-Yu, REN Rui-Lin, LIU Pei-Ling, NING Hong-Mei, WANG Xiao-Lan, LI Yan-Jie. Effect of Moisture on High Hydrostatic Pressure Treated Waxy Maize Starch and Tapioca Starch[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 743-752. doi: 10.11858/gywlxb.2014.06.016
Citation: BAO Ya-Li, ZHOU Hai-Yu, REN Rui-Lin, LIU Pei-Ling, NING Hong-Mei, WANG Xiao-Lan, LI Yan-Jie. Effect of Moisture on High Hydrostatic Pressure Treated Waxy Maize Starch and Tapioca Starch[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 743-752. doi: 10.11858/gywlxb.2014.06.016

水分对高静压处理不同类型淀粉微观结构的影响

doi: 10.11858/gywlxb.2014.06.016
基金项目: 国家自然科学基金项目(21006043, 21466027)
详细信息
    作者简介:

    包亚莉(1969—), 女,硕士研究生,主要从事食品加工技术研究.E-mail:byl0823@163.com

    通讯作者:

    刘培玲(1980—), 女,博士,主要从事淀粉及其衍生物、非热技术研究.E-mail:lpl1023@126.com

  • 中图分类号: O521.9; TS205.9

Effect of Moisture on High Hydrostatic Pressure Treated Waxy Maize Starch and Tapioca Starch

  • 摘要: 利用高静压(HHP)作为物理变性方法处理糯玉米淀粉和木薯淀粉,考察水分含量对不同类型淀粉的糊化及重结晶的影响。用偏光显微镜、扫描电子显微镜观测HHP处理后淀粉颗粒的形态变化,利用激光粒度分析仪记录淀粉颗粒的粒度分布及变化规律,结合X射线衍射曲线及低场核磁共振图谱, 分析淀粉颗粒内水分的结合方式及程度。结果表明:当粉水比(淀粉质量和水质量之比)为3/10~5/10时,在HHP处理下,两种淀粉均发生结晶解体和溶胀现象。糯玉米淀粉的重结晶程度顺序为4/10粉水比 > 3/10粉水比 > 5/10粉水比; 木薯淀粉颗粒结晶结构完全消失,结晶破坏的程度是3/10粉水比 > 4/10粉水比 > 5/10粉水比。随着水分含量增大,糯玉米淀粉及木薯淀粉的粒度逐渐增大。干燥后淀粉中的水分主要以结合水的形式存在,且水分参与结晶结构的形成。

     

  • 图  普通光学显微镜下不同粉水比的糯玉米淀粉(放大倍数:400,正常光源)

    Figure  1.  Light micrographs of waxy maize starch with various starch-water ratios treated under 600 MPa (Magnitude:400, bright light)

    图  普通光学显微镜下不同粉水比的糯玉米淀粉(放大倍数:400, 偏振光源)

    Figure  2.  Light micrographs of waxy maize starch with various starch-water ratios treated under 600 MPa (Magnitude:400, polarized light)

    图  扫描电子显微镜下不同粉水比的糯玉米淀粉(放大倍数:1 500)

    Figure  3.  Scanning electron micrographs of waxy maize starch with various starch-water ratios

    图  扫描电子显微镜下不同粉水比的糯玉米淀粉(放大倍数:5 000)

    Figure  4.  Scanning electron micrographs of waxy maize starch with various starch-water ratios treated under 600 MPa (Magnitude:5 000)

    图  普通光学显微镜下不同粉水比的木薯淀粉(放大倍数:400,正常光源)

    Figure  5.  Light micrographs of tapioca starch with various starch-water ratios treated under 600 MPa (Magnitude:400, bright light)

    图  普通光学显微镜下不同粉水比的木薯淀粉(放大倍数:400, 偏振光源)

    Figure  6.  Light micrographs of tapioca starch with various starch-water ratios treated under 600 MPa (Magnitude:400, polarized light)

    图  扫描电子显微镜下不同粉水比的木薯淀粉(放大倍数:1 500)

    Figure  7.  Scanning electron micrographs of tapioca starch with various starch-water ratios treated under 600 MPa (Magnitude:1 500)

    图  扫描电子显微镜下不同粉水比的木薯淀粉(放大倍数:5 000)

    Figure  8.  Scanning electron micrographs of tapioca starch with various starch-water ratios treated under 600 MPa (Magnitude:5 000)

    图  不同粉水比的糯玉米及木薯淀粉经600 MPa处理后的X射线衍射图谱

    Figure  9.  X-ray powder diffraction patterns of 600 MPa treated waxy maize and tapioca starch with different starch-water ratios

    图  10  HHP处理不同粉水比的糯玉米和木薯淀粉的低场核磁共振图

    Figure  10.  Nuclear magnetic resonance patterns of HHP treated waxy maize and

    表  1  不同粉水比的糯玉米及木薯淀粉HHP处理后颗粒的粒径分布

    Table  1.   Parameters of particle size distribution for HHP modified waxy maize and tapioca starch with different starch-water ratios

    Material Starch-water
    ratio
    Particle size distribution/(%) Mean/(μm) dspan CV/(%) DS/(%)
    <10 μm 10~20 μm 20~40 μm 40~70 μm >70 μm
    Waxy
    maize starch
    1/10 8.71±0.70ab 13.99±15.15ab 26.60±1.27b 21.95±0.64ab 27.60±2.97e 53.41±4.24c 2.80±0.04c 81.25±0.21b 21.55±0.32bc
    3/10 9.57±2.02ab 14.83±4.20a 28.05±7.00ba 24.20±0.14b 23.30±5.29f 48.71±6.96e 2.34±0.13abc 75.15±0.92ab 36.69±7.95abc
    5/10 11.20±1.56bcd 18.60±0.57bc 31.75±1.06c 24.00±2.26ab 14.50±0.85c 38.70±0.88c 2.30±0.21abc 74.30±5.94ab 11.15±8.89abc
    7/10 13.95±1.77de 20.90±2.55c 36.40±0.99de 20.70±3.95ab 8.08±0.65b 32.85±0.80ab 2.15±0.26ab 78.15±9.55ab 25.65±2.51c
    1 14.95±0.92e 21.95±1.91c 38.10±0.85e 21.45±2.76ab 3.54±0.80a 29.05±0.51a 1.92±0.10a 67.30±5.52a 0.68±8.25a
    Tapioca
    starch
    1/10 16.35±0.92ab 19.20±0.00ab 31.80±1.41a 22.10±0.71d 10.53±1.23ab 33.71±0.40c 2.34±0.14a 74.70±1.98a 6.56±2.83a
    3/10 16.85±1.20ab 20.25±1.48abc 31.25±0.07a 20.80±1.70cd 10.85±1.60ab 33.46±1.48b 2.46±0.10a 77.55±3.04a 10.63±4.33a
    5/10 21.45±0.49ab 26.20±1.84bcd 30.70±2.40a 16.85±1.34bcd 4.61±3.32a 26.55±2.93ab 2.46±0.27a 78.20±5.66a 11.56±0.08a
    7/10 25.50±0.85b 32.20±0.71de 25.90±0.42a 12.00±0.28abc 4.40±1.41a 23.30±1.33ab 2.77±0.04a 88.30±4.95a 25.97±7.06a
    1 29.40±1.13b 40.30±4.81e 22.25±1.20a 6.20±2.26a 1.87±2.64a 18.43±2.79a 2.47±0.44a 86.00±22.63 22.68±3.27a
    Note:(1) All values are mean values of triplicate determinations±standard deviations;
    (2) Values sharing the same uppercase letter within a line are not significantly different(P<0.05);
    (3) Mean:De Brouckere diameter;dspan:Measurement of the width of size distribution, the narrower the distribution, the smaller the dspan is; CV:Volumetric concentration; DS:Swelling degree,DS=(CV-CV Native)/CV Native.
    下载: 导出CSV

    表  2  不同粉水比的糯玉米和木薯淀粉在600 MPa HHP处理后的X射线衍射参数

    Table  2.   X-ray powder diffraction parameters for 600MPa HHP modified waxy maize and tapioca starch with different stach-water ratios

    Material Stach-water
    ratio
    Half peak height Peak area Total area Relative crystallinity/
    (%)
    15.0° 17.2° 17.8° 22.9°
    Waxy
    maize
    1/10 2 293 2 996 3 232 2 307 0.33 20 106 0.00±0.00a
    3/10 1 511 835 2 067 841 7 247 27 937 14.39±0.12b
    5/10 1 735 2 182 2 042 2 351 340 735 990 797 34.39±0.08d
    7/10 1 951 2 936 2 020 2 411 215 566 859 177 25.09±0.03c
    1 2 039 2 429 2 017 2 406 274 046 1 045 979 26.20±0.04d
    Material Starch-water
    ratio
    Half peak height Peak area Total area Relative crystallinity/
    (%)
    15.3° 17.2° 17.8°
    Tapioca
    starch
    1/10 423.5 1 019 1 262 17.12 400 624 0.00±0.00a
    3/10 847.5 1 817 775 115 877 436 0.01±0.15a
    5/10 258 397 74 7 728 39 618 0.00±0.77a
    7/10 1 992 2 373 1 837 270 048 580 312 40.54±0.08b
    1 1 860 2 208 1 741 292 510 615 941 47.49±0.01c
    Note:The relative crystallinity values were triplicate determinations±standard deviations.
    下载: 导出CSV
  • [1] 王标诗, 李汴生, 曾庆孝, 等.热压协同处理对接种于鸡腿菇中的细菌芽孢灭活效果的影响[J].高压物理学报, 2010, 24(2): 136-142. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201002011.htm

    Wang B S, Li B S, Zeng Q X, et al. Inactivation effects of coprinus comatus inoculated with bacterial spores by high-pressure thermal processing[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 136-142. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201002011.htm
    [2] Shi W G, Wu H J, Zhou G Q, et al. Molecular analysis of stable mutagenesis in cucumber induced by high hydrostatic pressure[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 379-384. http://www.researchgate.net/publication/286043786_Molecular_analysis_of_stable_mutagenesis_in_cucumber_induced_by_high_hydrostatic_pressure
    [3] Farkas D F, Hoover D G. High pressure processing: Kinetics of microbial inactivation for alternative food processing technologies[J]. J Food Sci, 2000, 65(Suppl): 47-64. http://www.mendeley.com/catalog/kinetics-microbial-inactivation-alternative-food-processing-technologies-high/
    [4] Meyer R S, Cooper K L, Knorr D, et al. High-pressure sterilization of foods[J]. Food Technol, 2000, 54(11): 67-72.
    [5] Butz P, Tauscher B. Emerging technologies: Chemical aspects[J]. Food Res Int, 2002, 35(2/3): 279-284. http://www.sciencedirect.com/science/article/pii/S0963996901001971
    [6] 刘培玲, 张甫生, 白云飞, 等.高静压对淀粉结构及糊化性质的影响[J].高压物理学报, 2010, 24(6): 472-480. http://www.cqvip.com/QK/96553X/201006/37139327.html

    Liu P L, Zhang F S, Bai Y F, et al. Effect of high hydrostatic pressure on starch structure and gelatinization[J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 472-480. (in Chinese) http://www.cqvip.com/QK/96553X/201006/37139327.html
    [7] Stute R, Klingler R W, Boguslawski S, et al. Effects of high pressures treatment on starches[J]. Starch-Stärke, 1996, 48(11/12): 399-408. http://adsabs.harvard.edu/abs/1996EEEV...48..399S
    [8] 张力田.碳水化合物化学[M].北京: 轻工业出版社, 1988.

    Zhang L T. Carbohydrate Chemistry[M]. Beijing: China Light Industry Press, 1988. (in Chinese)
    [9] Buckow R, Heinz V, Knorr D. High pressure phase transition kinetics of maize starch[J]. J Food Eng, 2007, 81(2): 469-475. doi: 10.1016/j.jfoodeng.2006.11.027
    [10] Vainionpää J, Forssell P, Virtanen T. High-pressure gelatinization of barley starch at low moisture levels and elevated temperature[J]. Starch-Stärke, 1993, 45(1): 19-24. doi: 10.1002/star.19930450106
    [11] Orlowska M, Utzig E, Randzio S L. Thermogravimetric study of water state in wheat starch gels obtained under high pressures[J]. Ann NY Acad Sci, 2010, 1189: 55-61. doi: 10.1111/j.1749-6632.2009.05200.x
    [12] Umeki K, Kainuma K. Fine structure of Nägeli amylodextrin obtained by acid treatment of defatted waxy-maize starch-structural evidence to support the double-helix hypothesis[J]. Carbohyd Res, 1981, 96(2): 143-159. doi: 10.1016/S0008-6215(00)81866-2
    [13] Perry P A, Donald A M. SANS study of the distribution of water within starch granules[J]. Int J Bio Macromol, 2000, 28(1): 31-39. doi: 10.1016/S0141-8130(00)00143-4
    [14] 刘培玲, 任瑞林, 包亚莉, 等.高静压物理变性处理糯玉米淀粉的糊化及重结晶机理研究[J].高压物理学报, 2014, 28(4): 247-256. http://www.cqvip.com/QK/96553X/20142/663190621.html

    Liu P L, Ren R L, Bao Y L, et al. Effect of high hydrostatic pressure as a physical modification method on waxy maize starch gelatinization and retrogradation[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 247-256. (in Chinese) http://www.cqvip.com/QK/96553X/20142/663190621.html
    [15] 刘培玲, 沈群, 胡小松, 等. X射线衍射法研究不同类型淀粉高静压处理后晶体结构的变化[J].光谱与光谱分析, 2012, 32(9): 2579-2582. http://d.wanfangdata.com.cn/Periodical/gpxygpfx201209060

    Liu P L, Shen Q, Hu X S, et al. X-ray diffraction study of high hydrostatic pressure on crystalline structure different type starches[J]. Spectroscopy and Spectral Analysis, 2012, 32(9): 2579-2582. (in Chinese) http://d.wanfangdata.com.cn/Periodical/gpxygpfx201209060
    [16] Miles M J, Morris V J, Orford P D, et al. The roles of amylose and amylopectin in the gelation and retrogradation of starch[J]. Carbohyd Res, 1985, 135(2): 271-281. doi: 10.1016/S0008-6215(00)90778-X
    [17] Katopo H, Song Y, Jane J. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches[J]. Carbohyd Polym, 2002, 47(3): 233-244. doi: 10.1016/S0144-8617(01)00168-0
    [18] Fu Z Q, Wang L J, Li D, et al. Effects of high-pressure homogenization on the properties of starch-plasticizer dispersions and their films[J]. Carbohyd Polym, 2011, 86(1): 202-207. doi: 10.1016/j.carbpol.2011.04.032
    [19] 邵小龙, 李云飞.用低场核磁共振研究烫漂对甜玉米水分布和状态影响[J].农业工程学报, 2009, 25(10): 302-306. http://www.cnki.com.cn/Article/CJFDTotal-NYGU200910056.htm

    Shao X L, Li Y F. Effects of blanching on water distribution and water status in sweet corn investigated by using MRI and NMR[J]. Transactions of the CSAE, 2009, 25(10): 302-306. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-NYGU200910056.htm
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  5825
  • HTML全文浏览量:  1975
  • PDF下载量:  104
出版历程
  • 收稿日期:  2013-12-25
  • 修回日期:  2014-02-02

目录

    /

    返回文章
    返回