气-液-固三相体系云雾爆轰特性的实验研究

王海洋 解立峰 饶国宁 孙晓雄

王海洋, 解立峰, 饶国宁, 孙晓雄. 气-液-固三相体系云雾爆轰特性的实验研究[J]. 高压物理学报, 2014, 28(6): 671-679. doi: 10.11858/gywlxb.2014.06.005
引用本文: 王海洋, 解立峰, 饶国宁, 孙晓雄. 气-液-固三相体系云雾爆轰特性的实验研究[J]. 高压物理学报, 2014, 28(6): 671-679. doi: 10.11858/gywlxb.2014.06.005
WANG Hai-Yang, XIE Li-Feng, RAO Guo-Ning, SUN Xiao-Xiong. Detonation Characteristics of RDX-Liquid Fuel-Air Three-Phase System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 671-679. doi: 10.11858/gywlxb.2014.06.005
Citation: WANG Hai-Yang, XIE Li-Feng, RAO Guo-Ning, SUN Xiao-Xiong. Detonation Characteristics of RDX-Liquid Fuel-Air Three-Phase System[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 671-679. doi: 10.11858/gywlxb.2014.06.005

气-液-固三相体系云雾爆轰特性的实验研究

doi: 10.11858/gywlxb.2014.06.005
基金项目: 国家青年科学基金(11102091);高等学校博士学科点专项科研博导类基金(20113219110010)
详细信息
    作者简介:

    王海洋(1988—), 男,博士研究生,主要从事多相流、粉尘爆炸研究.E-mail:610902772@qq.com

    通讯作者:

    解立峰(1965—), 男,博士,副教授,主要从事爆炸理论及作用、防火防爆工程研究. E-mail:xielifeng319@sina.com

  • 中图分类号: O382.1;O384

Detonation Characteristics of RDX-Liquid Fuel-Air Three-Phase System

  • 摘要: 在内径为0.2 m、高5.4 m的大型立式激波管内,同时对液体燃料和黑索金(RDX)粉末进行抛撒,采用底部直接起爆,得到了RDX-液体燃料-空气三相体系的爆压和爆速,利用烟熏技术得到了爆轰波的胞格结构、尺寸及长宽比。结果表明:90#溶剂油-空气两相体系的平均爆压为5~6 MPa,可以将其作为燃料-空气炸药的主燃料;向该燃料中添加硝酸异丙酯(IPN)可以降低其临界起爆能,添加RDX能够提高体系的爆速和爆压。此外,通过理论分析结合实验验证得出,多相爆轰的临界起爆能和爆轰胞格尺寸之间存在与气相爆轰类似的关系。

     

  • 图  实验设备结构图

    Figure  1.  The structure of experimental device

    图  典型压力时间曲线

    Figure  2.  Typical pressure-time curves

    图  三相云雾爆轰时序照片

    Figure  3.  A series of experimental photos of three-phase cloud detonation

    图  不同RDX添加量的RDX-90#溶剂油体系的爆压随距离变化趋势

    Figure  4.  Detonation pressure with distance for RDX-90# solvent oil with various RDX additive amounts

    图  不同RDX添加量的RDX-混合溶剂体系的爆压随距离变化趋势

    Figure  5.  Detonation pressure with distance for RDX-mixed fuel with various RDX additive amounts

    图  不同RDX添加量的RDX-90#溶剂油体系的爆速随距离变化趋势

    Figure  6.  Detonation velocity with distance for RDX-90# solvent oil with various RDX additive amounts

    图  不同RDX添加量的RDX-混合溶剂体系的爆速随距离变化趋势

    Figure  7.  Detonation velocity with distance for RDX-mixed fuel with various RDX additive amounts

    图  距离起爆点3.15 m处, 爆速随RDX含量的变化趋势

    Figure  8.  Detonation velocity with the mass fraction of RDX at the distance of 3.15 m

    图  PO-空气两相爆燃压力-时间曲线

    Figure  9.  Deflagration pressure of PO-air with time

    图  10  RDX-PO-空气三相爆压-时间曲线

    Figure  10.  Detonation pressure of RDX-PO-air with time

    图  11  胞格结构示意图[13]

    Figure  11.  Structure of detonation cell[13]

    图  12  RDX-燃料-空气三相爆轰的典型胞格照片

    Figure  12.  Photo of RDX- fuel-air detonation cells

    图  13  RDX-90#溶剂油-空气和RDX-混合溶剂-空气体系爆轰胞格尺寸随RDX质量分数的变化趋势

    Figure  13.  Detonation cell width with mass fraction of RDX for RDX-90# solvent oil-air and RDX-mixed fuel-air system

    图  14  RDX-90#溶剂油-空气和RDX-混合溶剂-空气体系爆轰胞格长宽比随RDX质量分数的变化趋势

    Figure  14.  L/λ of Detonation cell with mass fraction of RDX for RDX-90# solvent oil-air and RDX-mixed fuel-air system

    表  1  传感器位置和量程

    Table  1.   Position and range of pressure sensors

    No. Distance from the
    detonation point/
    (m)
    Maximum
    pressure/
    (MPa)
    S2 1.4 15.330
    S3 1.9 15.270
    S4 2.4 6.784
    S5 2.9 6.757
    S6 3.4 6.220
    S7 3.9 6.000
    下载: 导出CSV

    表  2  90#溶剂油和IPN的理化性质

    Table  2.   Physicochemical properties of 90# solvent oil and IPN

    Liquid
    fuel
    Density/
    (g/cm3)
    Composition Boiling
    point/
    (℃)
    Flash
    point/
    (℃)
    Ignition
    temperature/
    (℃)
    Upper
    explosive
    limit/(%)
    Lower
    explosive
    limit/(%)
    90# solvents oil 0.65 C5H12, C6H14 35-60 13 228 5.9 1.1
    IPN 1.04 C3H7NO3 98-102 11 - 100 2
    下载: 导出CSV

    表  3  临界起爆能实验值与理论值的比较

    Table  3.   Comparison between experimental and theoretical value of critical initiation energy

    Constituents ρ0/
    (kg/m3)
    vCJ/
    (m/s)
    λ/
    (mm)
    Theoretical
    Ec/(kJ)
    Experimental
    Ec/(kJ)
    RDX-90# solvent oil-air 1.633 2 1 794 24.6 14.279 14.735
    RDX-mixed fuel-air 1.659 5 1 808 19.1 6.893 5.945
    下载: 导出CSV
  • [1] 姜宗林, 滕宏辉, 刘云峰.气相爆轰物理的若干研究进展[J].力学进展, 2012, 42(2): 129-140. http://d.wanfangdata.com.cn/Periodical/lxjz201202002

    Jiang Z L, Teng H H, Liu Y F. Some research progress on gaseous detonation physics[J]. Advances in Mechanics, 2012, 42(2): 129-140. (in Chinese) http://d.wanfangdata.com.cn/Periodical/lxjz201202002
    [2] Lee J H S. Dynamic parameters of gaseous detonations[J]. Annu Rev Fluid Mech, 1984, 16: 311-336. doi: 10.1146/annurev.fl.16.010184.001523
    [3] Eaton R, Zhang B, Bergthorson J M, et al. Measurement and chemical kinetic model predictions of detonation cell size in methanol-oxygen mixtures[J]. Shock Waves, 2012, 22: 173-178. doi: 10.1007/s00193-012-0359-x
    [4] 王昌建, 徐胜利, 郭长铭.气相爆轰波在半圆形弯管中传播现象的实验研究[J].爆炸与冲击, 2003, 23(5): 448-453. http://www.cqvip.com/Main/Detail.aspx?id=8384401

    Wang C J, Xu S L, Guo C M. Experimental investigation on gaseous detonation propagation in a semi-circle bend tube[J]. Explosion and Shock Waves, 2003, 23(5): 448-453. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=8384401
    [5] 王昌建, 郭长铭, 徐胜利, 等.气相爆轰在T形管中传播现象的实验研究[J].力学学报, 2004, 36(1): 16-23. http://www.cqvip.com/Main/Detail.aspx?id=9081118

    Wang C J, Guo C M, Xu S L, et al. Experimental investigation on gaseous detonation propagation through a T-shape bifurcated tube[J]. Acta Mechanica Sinica, 2004, 36(1): 16-23. (in Chinese) http://www.cqvip.com/Main/Detail.aspx?id=9081118
    [6] 刘光烈.多相爆轰试验管结构设计及试验验证[J].含能材料, 1997, 5(1): 36-38.

    Liu G L. Design of multiphase detonation tube and its experimental verification[J]. Energetic Materials, 1997, 5(1): 35-38. (in Chinese)
    [7] 刘庆明, 白春华, 李建平.多相燃料空气炸药爆炸压力场研究[J].实验力学, 2008, 23(4): 360-370.

    Liu Q M, Bai C H, Li J P. Study on blast field characteristics of multiphase fuel air explosive[J]. Journal of Experimental Mechanics, 2008, 23(4): 360-370. (in Chinese)
    [8] 汤明钧.多相爆轰与生产安全[J].力学与实践, 1985, 7(5): 62-63. http://www.cnki.com.cn/Article/CJFDTotal-LXYS198505017.htm

    Tang M J. Multiphase detonation and production safety[J]. Mechanics in Engineering, 1985, 7(5): 62-63. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXYS198505017.htm
    [9] 贵大勇, 刘吉平, 冯顺山.几种典型燃料空气炸药威力性能研究[J].含能材料, 2002, 10(3): 121-124. http://www.cqvip.com/QK/90247X/20023/6819445.html

    Gui D Y, Liu J P, Feng S S. Research of power performace of several typical fuel-air explosives[J]. Energetic Materials, 2002, 10(3): 121-124. (in Chinese) http://www.cqvip.com/QK/90247X/20023/6819445.html
    [10] 徐晓峰.碳氢燃料爆轰特性的研究[D].南京: 南京理工大学, 2003.

    Xu X F. Detonation properties of several hydrocarbon fuels[D]. Nanjing: Nanjing University of Science and Technology, 2003. (in Chinese)
    [11] 姚干兵, 解立峰, 刘家骢.立式激波管内云雾爆轰胞格尺寸的测定与分析[J].爆炸与冲击, 2007, 27(4): 312-318.

    Yao G B, Xie L F, Liu J C. Measurement and analysis of the cell size caused by fuel-air detonation in a vertical shock tube[J]. Explosion and Shock Waves, 2007, 27(4): 312-318. (in Chinese)
    [12] 陈默, 白春华, 刘庆明.大型水平管道中环氧丙烷-铝粉-空气混和物爆燃转爆轰的实验研究[J].高压物理学报, 2011, 25(4): 359-364. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104013

    Chen M, Bai C H, Liu Q M. Experimental research of deflagration to detonation transition of epoxypropane-aluminum-air mixtures in large-scale tube[J]. Chinese Journal of High Pressure Physics, 2011, 25(4): 359-364. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb201104013
    [13] 张博, 白春华.气相爆轰动力学[M].北京: 科学出版社, 2012.

    Zhang B, Bai C H. Gaseous Detonation Mechanics[M]. Beijing: Science Press, 2012. (in Chinese)
    [14] Lee J H S. Initiation of gaseous detonation[J]. Annu Rev Phys Chem, 1977, 28(1): 75-104.
    [15] Lee J H S, Knystautas R, Guirao C. The link between cell size, critical tube diameter, initiation energy and detonability limits[C]//Fuel-Air Explosions. Waterloo: University of Waterloo Press, 1982: 157-187.
    [16] 刘世杰, 林志勇, 孙明波, 等.采用不同化学反应源项处理方法的胞格爆轰数值研究[J].国防科技大学学报, 2010, 32(5): 1-6.

    Liu S J, Lin Z Y, Sun M B, et al. Numerical Simulation of cellular detonation using different chemical reaction source term methods[J]. Journal of National University of Defense Technology, 2010, 32(5): 1-6. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  6663
  • HTML全文浏览量:  2210
  • PDF下载量:  325
出版历程
  • 收稿日期:  2012-10-16
  • 修回日期:  2012-11-13

目录

    /

    返回文章
    返回