非饱和黏土平板撞击实验及状态方程的研究

丁育青 汤文辉 张若棋 冉宪文 张明建

丁育青, 汤文辉, 张若棋, 冉宪文, 张明建. 非饱和黏土平板撞击实验及状态方程的研究[J]. 高压物理学报, 2014, 28(6): 648-654. doi: 10.11858/gywlxb.2014.06.002
引用本文: 丁育青, 汤文辉, 张若棋, 冉宪文, 张明建. 非饱和黏土平板撞击实验及状态方程的研究[J]. 高压物理学报, 2014, 28(6): 648-654. doi: 10.11858/gywlxb.2014.06.002
DING Yu-Qing, TANG Wen-Hui, ZHANG Ruo-Qi, RAN Xian-Wen, ZHANG Ming-Jian. Equation of State for Unsaturated Clay by Plate Impact Experiments[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 648-654. doi: 10.11858/gywlxb.2014.06.002
Citation: DING Yu-Qing, TANG Wen-Hui, ZHANG Ruo-Qi, RAN Xian-Wen, ZHANG Ming-Jian. Equation of State for Unsaturated Clay by Plate Impact Experiments[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 648-654. doi: 10.11858/gywlxb.2014.06.002

非饱和黏土平板撞击实验及状态方程的研究

doi: 10.11858/gywlxb.2014.06.002
基金项目: 国家安全重大基础研究项目; 国家自然科学基金(11002162)
详细信息
    作者简介:

    丁育青(1985—), 男,博士,主要从事材料动态力学性能研究.E-mail:yqding_nudt@163.com

    通讯作者:

    汤文辉(1964—), 男,博士,教授,主要从事冲击波物理研究.E-mail:wenhuitang@163.com

  • 中图分类号: O521.2; TU411.5

Equation of State for Unsaturated Clay by Plate Impact Experiments

  • 摘要: 利用口径为24 mm的二级轻气炮实验装置,结合磁测速和光纤探针动态测试技术,分别对含水率为0、8%和15%的3种非饱和黏土试样进行了平板撞击实验,试样的压力峰值区间为1.29~32.54 GPa。实验结果表明,含水率对非饱和黏土的冲击压缩特性影响明显。当非饱和黏土受到冲击压缩时,孔隙被进一步压实,滞留在黏土孔隙中的水和空气来不及排出,从而与黏土中的固体颗粒一起,共同支配非饱和黏土的冲击压缩特性;而由于水的相对不可压缩性,导致黏土的可压缩性随着含水率的升高而下降。提出一种修正的三相混合物状态方程,对3种含水率试样的压力-密度曲线进行了拟合,结果表明,该状态方程能够较好地描述不同含水率非饱和黏土的压力-密度关系。

     

  • 图  磁测速原理示意图

    Figure  1.  Schematic of magnetic measurement of velocity

    图  平板撞击实验示意图

    Figure  2.  Schematic of plate impact configuration before impact

    图  实验测得的典型探针信号

    Figure  3.  Signal of fiber-optic pins measured in experiments

    图  黏土试样的D-u关系

    Figure  4.  The relationship between D and u of clay specimen at different moisture contents

    图  黏土试样的p-ρ Hugoniot曲线

    Figure  5.  The p-ρ Hogoniot curves of clay specimen at different moisture contents

    图  含水率为8%的试样的压力-密度关系比较

    Figure  6.  Comparison between experimental data and 2 three-phase EOS of clay specimen at 8% moisture content

    图  含水率为15%的试样的压力-密度关系比较

    Figure  7.  Comparison between experimental data and 2 three-phase EOS of clay specimen at 15% moisture content

    表  1  黏土试样颗粒分析结果

    Table  1.   Particle size distribution in the clay sample

    Particle dimension/
    (mm)
    Mass proportion/
    (%)
    <0.005 28.6
    0.005-0.075 71.4
    >0.075 0
    下载: 导出CSV

    表  2  飞片材料参数

    Table  2.   Parameters of flyer plate materials

    Material Density/
    (g/cm3)
    Sound speed/
    (km/s)
    λ
    Al alloy 2.785 5.328 1.338
    Cu 8.93 3.940 1.489
    Ta 16.656 3.437 1.19
    下载: 导出CSV

    表  3  平板撞击实验结果

    Table  3.   Results of plate impact experiments

    Sample
    condition
    Flyer
    material
    Flyer
    velocity/
    (km/s)
    Shock
    arrival time/
    (ns)
    Sample
    thickness/
    (mm)
    Particle
    velocity/
    (km/s)
    Shock
    velocity/
    (km/s)
    Longitudinal
    stress/
    (GPa)
    Dry clay Al 0.561 1 868 2.98 0.48 1.60 1.29
    Cu 1.042 1 054 2.96 0.92 2.81 4.40
    Cu 2.340 658 2.94 1.97 4.47 14.95
    Ta 3.180 556 3.02 2.79 5.43 25.71
    Wet clay
    (Moisture
    content=8%)
    Al 0.563 1 564 2.94 0.46 1.88 1.58
    Cu 1.101 956 2.98 0.95 3.12 5.46
    Cu 2.290 640 3.00 1.89 4.69 16.26
    Ta 3.190 500 2.94 2.74 5.88 29.60
    Wet clay
    (Moisture
    content=15%)
    Al 0.495 1 192 3.00 0.37 2.52 1.84
    Cu 1.142 848 2.98 0.97 3.51 6.63
    Cu 2.370 538 2.88 1.89 5.35 19.81
    Ta 3.130 478 3.01 2.64 6.30 32.54
    下载: 导出CSV
  • [1] Henrych J.爆炸动力学及其应用[M].熊建国, 译.北京: 科学出版社, 1987: 161-170.

    Henrych J. The Dynamics of Explosion and Its Application[M]. Translated by Xiong J G. Beijing: Science Press, 1987: 161-170. (in Chinese)
    [2] Tsembelis K, Proud W G, Vaughan B A M. The behavior of sand under shock wave loading: Experiments and simulations[C]//Benitez F G. Proceedings of the 14th DYMAT Technical Meeting on Behavior of Materials at High Strain Rates: Numerical Modeling. Sevilla, 2002: 193-203.
    [3] Resnyansky A D, Bourne N K. Shock compression of dry and hydrated sand[C]//Furnish M D. Shock Compression of Condensed Matter-2003. New York: American Institute of Physics, 2004: 1474-1477.
    [4] Chapman D J, Tsembelis K, Proud W G. The behaviour of dry sand under shock-loading[C]//Furnish M D. Shock Compression of Condensed Matter-2005. New York: American Institute of Physics, 2006: 1445-1448.
    [5] Chapman D J, Tsembelis K, Proud W G. The behavior of water saturated sand under shock-loading[C]//O'Brien E. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics. Saint Louis: The Society for Experimental Mechanics, 2006: 834-840.
    [6] Chapman D J, Braithwaite C H, Proud W G. Shock-loading of statically compacted soil[C]//Elert M, Furnish M D, Cliau R, et al. Shock Compression of Condensed Matter-2007. New York: American Institute of Physics, 2007: 1367-1370.
    [7] Brown J L, Vogler T J, Chhabildaz L C, et al. Shock response of dry sand, SAND2007-3524[R]. USA: Sandia National Laboratories, 2007.
    [8] Bragov A M, Lomunov A K, Sergeichev I V, et al. Determination of physicomechanical properties of soft soils from medium to high strain rates[J]. Int J Impact Eng, 2008, 35(9): 967-976. doi: 10.1016/j.ijimpeng.2007.07.004
    [9] Arlery M, Gardou M, Fleureau J, et al. Dynamic behaviour of dry and water-saturated sand under planar shock conditions[J]. Int J Impact Eng, 2010, 37(1): 1-10. doi: 10.1016/j.ijimpeng.2009.07.009
    [10] 钱七虎, 王明洋.岩土中的冲击爆炸效应[M].北京: 国防工业出版社, 2010: 205-213.

    Qian Q H, Wang M Y. Impact and Explosion Effects in Rock and Soil[M]. Beijing: National Defence Industry Press, 2010: 205-213. (in Chinese)
    [11] Wang Z, Lu Y. Numerical analysis on dynamic deformation mechanism of soils under blast loading[J]. Soil Dyn Earthq Eng, 2003, 23(8): 705-714. doi: 10.1016/S0267-7261(03)00076-9
    [12] Wang Z, Hao H, Lu Y. A three-phase soil model for simulating stress wave propagation due to blast loading[J]. Int J Numer Anal Met, 2004, 28(1): 33-56.
    [13] 汤文辉, 张若棋.物态方程理论及计算概论[M].第2版.北京: 高等教育出版社, 2008: 293-295.

    Tang W H, Zhang R Q. Introduction to Theory and Computation of Equations of State[M]. 2nd ed. Beijing: Higher Education Press, 2008: 293-295. (in Chinese)
    [14] 王荣波, 田建华, 何莉华, 等.石英光纤探针在非金属材料冲击实验中的应用[J].爆炸与冲击, 2006, 26(3): 284-287.

    Wang R B, Tian J H, He L H, et al. Application of fiber-optic pin to nonmetallic shock experiments[J]. Explosion and Shock Waves, 2006, 26(3): 284-287. (in Chinese)
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  6717
  • HTML全文浏览量:  2225
  • PDF下载量:  190
出版历程
  • 收稿日期:  2012-12-17
  • 修回日期:  2013-03-06

目录

    /

    返回文章
    返回