冲击加载对植物种子萌发率的影响

张伟 叶楠 魏刚 黄威

张伟, 叶楠, 魏刚, 黄威. 冲击加载对植物种子萌发率的影响[J]. 高压物理学报, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018
引用本文: 张伟, 叶楠, 魏刚, 黄威. 冲击加载对植物种子萌发率的影响[J]. 高压物理学报, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018
ZHANG Wei, YE Nan, WEI Gang, HUANG Wei. Effect of Shock Compression on Germination Rate of Plant Seeds[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018
Citation: ZHANG Wei, YE Nan, WEI Gang, HUANG Wei. Effect of Shock Compression on Germination Rate of Plant Seeds[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 507-512. doi: 10.11858/gywlxb.2014.04.018

冲击加载对植物种子萌发率的影响

doi: 10.11858/gywlxb.2014.04.018
详细信息
    作者简介:

    张伟(1964-), 男, 博士, 教授, 博士生导师, 主要从事冲击动力学研究.E-mail:zhdawei@hit.edu.cn

  • 中图分类号: O521.9; Q689

Effect of Shock Compression on Germination Rate of Plant Seeds

  • 摘要: 为分析冲击加载对植物种子萌发率的影响,利用轻气炮加载装置,对2种典型植物种子(苜蓿草种子和萝卜种子)进行飞片撞击实验。采用非显性有限元分析软件ANSYS AUTODYN,模拟盖板的变形以及冲击波在凹槽内的传播。通过测定实验后收集到的植物种子的萌发率,得到苜蓿草种子和萝卜种子的萌发率随峰值压力变化的关系。在385 MPa的峰值压力作用下,苜蓿草种子和萝卜种子的相对萌发率分别降为65.4%和6.1%。分析表明,实验中的种子破损是影响萌发率的次要原因。

     

  • 图  撞击实验装置示意图

    Figure  1.  Schematic of impact experimental set-up

    图  样品的压力-时间曲线(v=201.9 m/s)

    Figure  2.  Pressure-time curve of the sample (v=201.9 m/s)

    图  高速摄像机拍摄的飞片撞击过程

    Figure  3.  Process of flyer-plate impact by high-speed camera

    图  飞片撞击产生的冲击波在水中的传播(v=201.9 m/s)

    Figure  4.  Propagation of shock wave in water produced by the impact of flyer-plate (v=201.9 m/s)

    图  模拟得到的两边界测点的压力时程曲线

    Figure  5.  Pressure history at two gauge points in simulation

    图  不同撞击速度下典型破损的苜蓿草种子

    Figure  6.  Typical damage of alfalfa seeds impacted with different velocities

    图  不同撞击速度下典型破损的萝卜种子

    Figure  7.  Typical damage of turnip seeds impacted with different impact velocities

    图  苜蓿草和萝卜种子的破损率和不萌发率与撞击速度的关系

    Figure  8.  Variations of damage rate and ungermination rate with impact velocity for alfalfa and turnip seed

    表  1  实验选用的植物种子参数

    Table  1.   Parameters of plant seeds in experiments

    Seed Shape Size/(mm) Germination time/(d)
    Alfalfa Ovoid 12.64 3-5
    Turnip Flat 17.80 7-12
    下载: 导出CSV

    表  2  不同撞击速度下的峰值压力

    Table  2.   Peak pressures under different impact velocities

    No. v/(m/s) Peak pressure/(MPa)
    P1 93.5 116
    P2 154.2 220
    P3 165.2 237
    P4 201.9 297
    P5 229.8 385
    下载: 导出CSV

    表  3  冲击压缩后苜蓿草种子和萝卜种子的相对萌发率

    Table  3.   Relative germination rates of alfalfa and turnip seeds after shock compression

    No. v/(m/s) Peak pressure/(MPa) aalfalfa/(%) aturnip/(%)
    P0 0 0 100.0 100.0
    P1 93.5 116 81.6 46.5
    P2 154.2 220 81.8 48.4
    P3 165.2 237 75.4 33.8
    P4 201.9 297 70.4 11.9
    P5 229.8 385 65.4 6.1
    下载: 导出CSV
  • [1] Burchell M J, Galloway J A, Bunch A W, et al. Survivability of bacteria ejected from icy surfaces after hypervelocity impact[J]. Origins Life Evol Biosphere, 2003, 33(1): 53-74. doi: 10.1023/A:1023980713018
    [2] Burchell M J, Mann J R, Bunch A W. Survival of bacteria and spores under extreme shock pressures[J]. Mon Not R Astron Soc, 2004, 352(4): 1273-1278. doi: 10.1111/j.1365-2966.2004.08015.x
    [3] Horneck G, Rettberg P, Reitz G, et al. Protection of bacterial spores in space, a contribution to the discussion on panspermia[J]. Origins Life Evol Biosphere, 2001, 31(6): 527-547. doi: 10.1023/A:1012746130771
    [4] Stöffler D, Horneck G, Ott S, et al. Experimental evidence for the potential impact ejection of viable microorganisms from Mars and Mars-like planets[J]. Icarus, 2007, 186(2): 585-588. doi: 10.1016/j.icarus.2006.11.007
    [5] Willis M J, Ahrens T J, Bertani L E, et al. Bugbuster-Survivability of living bacteria upon shock compression[J]. Earth Planet Sci Lett, 2006, 247(3/4): 185-196.
    [6] Tepfer D, Leach S. Plant seeds as model vectors for the transfer of life through space[J]. Astrophys Space Sci, 2006, 306(1/2): 69-75.
    [7] Nicholson W L, Schuerger A C, Setlow P. The solar UV environment and bacterial spore UV resistance: Considerations for Earth-to-Mars transport by natural processes and human spaceflight[J]. Mutat Res Fund Mol Mech Mutagen, 2005, 571(1/2): 249-264.
    [8] Fajardo-Cavazos P, Langenhorst F, Melosh H J, et al. Bacterial spores in granite survive hypervelocity launch by spallation: Implications for lithopanspermia[J]. Astrobiology, 2009, 9(7): 647-657. doi: 10.1089/ast.2008.0326
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  6854
  • HTML全文浏览量:  1996
  • PDF下载量:  229
出版历程
  • 收稿日期:  2012-10-23
  • 修回日期:  2013-01-06

目录

    /

    返回文章
    返回