冲击波垂向加载下PZT 95/5铁电陶瓷的去极化和放电过程分析

张攀 蒋一萱 王省哲 贺红亮

张攀, 蒋一萱, 王省哲, 贺红亮. 冲击波垂向加载下PZT 95/5铁电陶瓷的去极化和放电过程分析[J]. 高压物理学报, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003
引用本文: 张攀, 蒋一萱, 王省哲, 贺红亮. 冲击波垂向加载下PZT 95/5铁电陶瓷的去极化和放电过程分析[J]. 高压物理学报, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003
ZHANG Pan, JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003
Citation: ZHANG Pan, JIANG Yi-Xuan, WANG Xing-Zhe, HE Hong-Liang. Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading[J]. Chinese Journal of High Pressure Physics, 2014, 28(4): 399-406. doi: 10.11858/gywlxb.2014.04.003

冲击波垂向加载下PZT 95/5铁电陶瓷的去极化和放电过程分析

doi: 10.11858/gywlxb.2014.04.003
基金项目: 中国工程物理研究院科学技术基金(2010A0201005);国家自然科学基金委创新研究群体项目(11121202)
详细信息
    作者简介:

    张攀(1987-), 男, 硕士研究生, 主要从事冲击动力学研究.E-mail:1987.zhangpan@163.com

    通讯作者:

    王省哲(1972-), 男, 博士, 教授, 主要从事电磁固体力学、耦合场理论与计算以及计算力学研究.E-mail:xzwang@lzu.edu.cn

  • 中图分类号: O521.2;O347.5

Analysis of Depolarization and Discharge Process of PZT 95/5 Ferroelectric Ceramic under Normal Shock Loading

  • 摘要: 电极化后的PZT 95/5铁电陶瓷能够在冲击波作用下快速去极化并释放束缚电荷,形成高功率的瞬态输出电能。对于垂直于极化方向的冲击波加载情况,通过将去极化过程中的铁电陶瓷等效为电流源、电容和电导的并联电路,综合考虑冲击波压力对波速和去极化相变过程的影响,以及冲击波前、后铁电陶瓷的介电常数和电导率变化,建立了描述冲击波垂向加载下PZT 95/5铁电陶瓷去极化和放电过程的模型,解析获得了铁电陶瓷的放电电流表述。在此模型基础上,开展了短路和电阻负载条件下PZT 95/5铁电陶瓷在冲击放电过程中的输出电流特征分析,并与相关实验结果进行了对比。结果表明:模型能较好地模拟实验观测的铁电陶瓷PZT 95/5的冲击放电过程,以及冲击波压力、负载电阻等对冲击放电输出电流的影响规律。

     

  • 图  冲击波作用下PZT 95/5陶瓷去极化放电过程的等效电路图

    Figure  1.  Equivalent circuit diagram of the depolarization and discharge process of PZT 95/5 ceramic under shock wave

    图  短路情况下铁电陶瓷去极化放电过程中的输出电流变化曲线

    Figure  2.  The output current during the depolarization and discharge process of ferroelectric ceramics in the case of short circuit

    图  负载情况下输出电流的计算结果与实验结果的对比

    Figure  3.  Comparisons between calculated and experimental data of the output current for the load case

    图  负载情况下考虑介电常数弛豫效应时得到的输出电流模拟结果与实验结果的对比

    Figure  4.  Comparisons between calculated and experimental data of the output current for the load case with consideration of dielectric relaxation

    图  冲击波作用前、后铁电陶瓷介电常数的变化对输出电流的影响

    Figure  5.  Effect of the dielectric difference of ferroelectric ceramic caused by the shock wave on the output current (σ=1.58 GPa)

    图  冲击波作用前、后铁电陶瓷电导率的变化对输出电流的影响

    Figure  6.  Effect of the conductivity difference of ferroelectric ceramic caused by the shock wave on the output current (σ=1.58 GPa)

    表  1  铁电陶瓷样品的材料参数

    Table  1.   Material parameters of ferroelectric ceramics

    Material X0/(mm) Y0/(mm) Z0/(mm) ρ0/(g/cm3) P0/(C/m2)
    PZT 95/5[12] 10 29 4 7.3 0.3
    PSZT[19] 2 30 10 7.8 0.28
    下载: 导出CSV

    表  2  冲击波前、后PZT 95/5样品的介电常数和电导率[10, 16]

    Table  2.   Permittivity and conductivity of PZT 95/5 before and after shock wave[10, 16]

    ε0/(nF/m) ε1/(nF/m) k0/(μS/m) k1/(μS/m)
    16 9 2.5 2 500
    下载: 导出CSV

    表  3  铁电-反铁电相变参数

    Table  3.   Parameters of the ferroelectric to antiferroelectric phase transformation

    Material σcr, 1/(GPa) σcr, 2/(GPa) c d/(GPa) e/(GPa)
    PZT 95/5[12] 0.47 2.27 1.26 0 0.59
    PSZT[18] 0.23 1.94 1.25 -0.19 0.53
    下载: 导出CSV
  • [1] Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Microstructural effects[J]. J Appl Phys, 2007, 101(5): 053525. doi: 10.1063/1.2697428
    [2] Nie H C, Dong X L, Feng N B, et al. Quantitative dependence of the properties of Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3 ferroelectric ceramics on porosity[J]. Mater Res Bull, 2010, 45(5): 564-567. doi: 10.1016/j.materresbull.2010.01.022
    [3] Fritz I J. Uniaxial-stress effects in a 95/5 lead zirconate titanate ceramic[J]. J Appl Phys, 1978, 49(9): 4922-4928. doi: 10.1063/1.325527
    [4] Lysne P C. Dielectric breakdown of shock-loaded PZT65/35[J]. J Appl Phys, 1973, 44(2): 577-582. doi: 10.1063/1.1662227
    [5] Lysne P C. Prediction of dielectric breakdown in shock-loaded ferroelectric ceramics[J]. J Appl Phys, 1975, 46(1): 230-232. doi: 10.1063/1.321326
    [6] Sindeyev Y G, Yurkevich V E. Electrical breakdown in ferroelectric ceramics(a review)[J]. Ferroelectrics, 1990, 110: 193-218. doi: 10.1080/00150199008008916
    [7] Lysne P C, Percival C M. Electric energy generation by shock compression of ferroelectric ceramics: Normal-mode response of PZT 95/5[J]. J Appl Phys, 1975, 46(4): 1519-1525. doi: 10.1063/1.321803
    [8] Mazzie J A. Simplified model of ferroelectric energy generation by shock compression[J]. J Appl Phys, 1977, 48(3): 1368-1369. doi: 10.1063/1.323735
    [9] Mock W Jr, Holt W H. Pulse charging of nanofarad capacitors from the shock depoling of PZT 56/44 and PZT 95/5 ferroelectric ceramics[J]. J Appl Phys, 1978, 49(12): 5846-5854. doi: 10.1063/1.324602
    [10] 贺元吉.爆电能源高功率超宽带脉冲发生器研究[D].长沙: 国防科学技术大学, 2001: 34-38.

    He Y J. Study of explosive electrical energy and high power ultra-wideband pulse generator[D]. Changsha: National University of Defense Technology, 2001: 34-38. (in Chinese)
    [11] Bolyard D W, Neuber A A, Krile J T, et al. Simulation of compact explosively driven ferroelectric generators[J]. IEEE Trans Plasma Sci, 2010, 38(4): 1008-1014. doi: 10.1109/TPS.2010.2040819
    [12] Setchell R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Depoling currents[J]. J Appl Phys, 2005, 97(1): 013507. doi: 10.1063/1.1828215
    [13] Jiang D D, Du J M, Gu Y, et al. Phenomenological description of depoling current in Pb0.99Nb0.02(Zr0.95Ti0.05)0.98O3 ferroelectric ceramics under shock wave compression: Relaxation model[J]. J Appl Phys, 2012, 111(10): 104102. doi: 10.1063/1.4716461
    [14] 王礼立.应力波基础[M].北京: 国防工业出版社, 1983: 165-166.

    Wang L L. Foundation of Stress Waves[M]. Beijing: National Defense Industry Press, 1983: 165-166. (in Chinese)
    [15] 经福谦.实验物态方程导引[M].第2版.北京: 科学出版社, 1999: 90.

    Jing F Q. Introduction to Experimental Equation of State[M]. 2nd Ed. Beijing: Science Press, 1999: 90. (in Chinese)
    [16] 温殿英, 林其文.冲击波压缩PZT-95/5铁电陶瓷的电介质击穿[J].高压物理学报, 1998, 12(3): 199-206. http://www.cqvip.com/QK/96553X/199803/3210138.html

    Wen D Y, Lin Q W. Dielectric breakdown of ferroelectric ceramics PZT-95/5 under shock compression[J]. Chinese Journal of High Pressure Physics, 1998, 12(3): 199-206. (in Chinese) http://www.cqvip.com/QK/96553X/199803/3210138.html
    [17] Reynolds C E, Seay G E. Two-wave shock structures in the ferroelectric ceramics barium titanate and lead zirconate titanate[J]. J Appl Phys, 1962, 33(7): 2234-2241. doi: 10.1063/1.1728934
    [18] 刘高旻.高密度PZT95/5陶瓷的冲击相变及放电性能研究[D].绵阳: 中国工程物理研究院, 2009: 80-88.

    Liu G M. The study of shock phase transition and discharge performance of high-density PZT 95/5 ceramics[D]. Mianyang: China Academy of Engineering Physics, 2009: 80-88. (in Chinese)
    [19] Jiang D D, Du J M, Gu Y, et al. Self-generated electric field suppressing the ferroelectric to antiferroelectric phase transition in ferroelectric ceramics under shock wave compression[J]. J Appl Phys, 2012, 111(2): 024103. doi: 10.1063/1.3678005
    [20] Yang P, Payne D A. The effect of external field symmetry on the antiferroelectric-ferroelectric phase transformation[J]. J Appl Phys, 1996, 80(7): 4001-4005. doi: 10.1063/1.363358
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  6928
  • HTML全文浏览量:  2140
  • PDF下载量:  331
出版历程
  • 收稿日期:  2012-09-03
  • 修回日期:  2012-11-22

目录

    /

    返回文章
    返回