弹头部结构对侵彻层合靶的影响

董玉财 杜忠华 刘荣忠 刘杰

董玉财, 杜忠华, 刘荣忠, 刘杰. 弹头部结构对侵彻层合靶的影响[J]. 高压物理学报, 2014, 28(3): 358-364. doi: 10.11858/gywlxb.2014.03.015
引用本文: 董玉财, 杜忠华, 刘荣忠, 刘杰. 弹头部结构对侵彻层合靶的影响[J]. 高压物理学报, 2014, 28(3): 358-364. doi: 10.11858/gywlxb.2014.03.015
DONG Yu-Cai, DU Zhong-Hua, LIU Rong-Zhong, LIU Jie. Influence of the Nose Structure on Penetration into Laminated Target[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 358-364. doi: 10.11858/gywlxb.2014.03.015
Citation: DONG Yu-Cai, DU Zhong-Hua, LIU Rong-Zhong, LIU Jie. Influence of the Nose Structure on Penetration into Laminated Target[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 358-364. doi: 10.11858/gywlxb.2014.03.015

弹头部结构对侵彻层合靶的影响

doi: 10.11858/gywlxb.2014.03.015
基金项目: 国家自然科学基金(11372142);江苏省普通高校研究生创新计划项目(CXZZ13_1223)
详细信息
    作者简介:

    董玉财(1986—),男,博士研究生,主要从事冲击动力学和弹药工程研究.E-mail:kingdongyufeng@163.com

  • 中图分类号: TJ413.2

Influence of the Nose Structure on Penetration into Laminated Target

  • 摘要: 对4种不同头部形状杆式侵彻体斜侵彻层合靶过程,进行了数值模拟和试验研究。从开坑过程中质量的侵蚀情况以及靶后动能的角度,对开坑及侵彻能力进行评估。通过研究不同结构侵彻体对靶板斜侵彻的影响,得出了侵彻体动能随时间的变化规律。仿真和实验结果表明,不同头部结构对开坑作用有影响,继而影响后续杆体的侵彻过程。还发现铝风帽穿甲块头部结构对倾斜的层合靶侵彻最为有利,并对该头部的侵彻优势进行了分析, 这将会对其它类似侵彻体头部结构优化提供一定的参考。

     

  • 图  侵彻体的头部结构

    Figure  1.  Nose structure of penetrators

    图  仿真结构的初始状态

    Figure  2.  Initialization of the simulation structure

    图  t=60 μs时各种侵彻体的侵彻情况

    Figure  3.  The targets situation of penetration at t=60 μs

    图  t=150 μs时各种侵彻体的侵彻情况

    Figure  4.  The targets situation of penetration at t=150 μs

    图  侵彻体能量随时间的变化曲线

    Figure  5.  The kinetic energy curve of penetrator with time

    图  侵彻体质量随时间变化曲线

    Figure  6.  The mass curve of penetrator with time

    图  试验弹丸

    Figure  7.  Test projectile

    图  (c) 型侵彻体在1 455 m/s下3层靶板的弹坑相片

    Figure  8.  Crater photos of three target layers, (c)-type penetrator with the speed of 1 455 m/s

    图  (d) 型侵彻体在1 582 m/s下3层靶板的弹坑相片

    Figure  9.  Crater photos of three target layers, (d)-type penetrator with the speed of 1 582 m/s

    图  10  加速度矢量图

    Figure  10.  Acceleration vector diagram

    图  11  穿甲块碰靶

    Figure  11.  Piercing block impacting target

    表  1  弹芯结构基本质量

    Table  1.   Basic quality of penetrators' structure

    Label Structure name Nose of mass/(g) Total mass of penetrator/(g)
    (a) Nose of sectional cone shaped 4.6 52.0
    (b) Overall tungsten prong 4.4 51.8
    (c) Nose of aluminum ogive and piercing block 4.2 51.6
    (d) Overall tungsten flat nose 4.3 51.7
    下载: 导出CSV

    表  2  Johnson-Cook材料参数[10]

    Table  2.   Material parameters of Johnson-Cook[10]

    Material ρ/(g/cm3) E/(GPa) μ A/(MPa) B/(MPa) C n m Tmelt/(K) Troom/(K)
    93W 17.60 350 0.28 1 506 177 0.008 0.12 1.0 1 450 294
    L4 2.77 69 0.33 426 265 0.015 0.34 1.0 775 294
    RHA603 7.85 210 0.22 792 180 0.016 0.12 1.0 1 520 294
    下载: 导出CSV

    表  3  试验及仿真结果

    Table  3.   The result of experiment and simulation

    No. Type Penetrator mass/(g) v/(m/s) Penetration effect Experiment/(m/s) Simulation/(m/s)
    1 (a) 51.4 1 395 Ⅲ target not penetrated vs0≥1 650 vs0≈1 690
    2 (a) 51.5 1 458 Ⅲ target not penetrated
    3 (a) 51.6 1 629 Ⅲ target not penetrated
    4 (a) 51.7 1 637 Ⅲ target not penetrated
    5 (a) 51.2 1 650 Ⅲ target high-back convex
    6 (b) 51.6 1 467 Ⅲ target not penetrated vs0≈1 593 vs0≈1 590
    7 (b) 51.4 1 574 Ⅲ target not penetrated
    8 (b) 51.8 1 593 Ⅲ target drift plug penetrated
    9 (c) 51.2 1 375 Ⅲ target not penetrated vs0≈1 478 vs0≈1 460
    10 (c) 51.5 1 430 Ⅲ target not penetrated
    11 (c) 51.9 1 455 Ⅲ target not penetrated
    12 (c) 51.4 1 478 Ⅲ target penetrated
    13 (d) 51.8 1 485 Ⅲ target not penetrated vs0≈1 582 vs0≈1 580
    14 (d) 51.7 1 532 Ⅲ target dorsal fissure
    15 (d) 51.9 1 582 Ⅲ target drift plug penetrated
    下载: 导出CSV
  • [1] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival nose projectiles[J]. Int J Impact Eng, 1987, 16(4): 291-301. http://www.sciencedirect.com/science/article/pii/0734743X87900960
    [2] Rosenberg Z, Dekel E. On the role of nose profile in long-rod penetration[J]. Int J Impact Eng, 1999, 22(5): 551-557. doi: 10.1016/S0734-743X(98)00054-2
    [3] 程兴旺, 王富耻, 李树奎, 等.不同头部形状长杆弹侵彻过程的数值模拟[J].兵工学报, 2007, 28(8): 930-933. http://www.cnki.com.cn/Article/CJFDTotal-BIGO200708008.htm

    Cheng X W, Wang F C, Li S K, et al. Simulation on the penetrations of long-rod projectiles[J]. Acta Armamentarii, 2007, 28(8): 930-933. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-BIGO200708008.htm
    [4] 温万治, 恽寿榕, 江松.弹头部形状对侵彻影响的数值模拟研究[J].爆炸与冲击, 2003, 23(2): 140-146. http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200302008.htm

    Wen W Z, Yun S R, Jiang S. Numerical simulation for ogival and flat nose projectiles penetrating into semi-infinite concrete targets[J]. Explosion and Shock Waves, 2003, 23(2): 140-146. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-BZCJ200302008.htm
    [5] Yarin A L, Rubin M B, Roisman I V. Penetration of a rigid projectile into an elastic-plastic target of finite thickness[J]. Int J Impact Eng, 1995, 16(5): 80l-831. http://www.sciencedirect.com/science/article/pii/0734743X95000197
    [6] Yossifon G, Rubin M B, Yarin A L. Penetration of a rigid projectile into a finite thickness elastic-plastic target comparison between theory and numerical computations[J]. Int J Impact Eng, 2001, 25(3): 265-290. doi: 10.1016/S0734-743X(00)00040-3
    [7] 赵国志, 王晓鸣, 潘正伟.杆式穿甲弹设计理论[M].北京: 兵器工业出版社, 1997: 15-19.

    Zhao G Z, Wang X M, Pan Z W. Long Rod Penetrator of Design Theory[M]. Beijing: Armament Industry Press, 1997: 15-19. (in Chinese)
    [8] 赵国志.穿甲工程力学[M].北京: 兵器工业出版社, 1992: 147-149.

    Zhao G Z. Armour-Piercing Engineering Mechanics[M]. Beijing: Armament Industry Press, 1992: 147-149. (in Chinese)
    [9] Liang C C, Yang M F, Wu P W. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application[J]. Ocean Eng, 2005, 32(3): 441-468. http://www.sciencedirect.com/science/article/pii/S002980180400191X
    [10] 韩永要.杆-管异形侵彻体侵彻机理研究[D].南京: 南京理工大学, 2005: 19-26.

    Han Y Y. Research on penetration mechanism of novel penetrator composed by rod and tube[D]. Nanjing: Nanjing University of Science and Technology, 2005: 19-26. (in Chinese)
    [11] Goldsmith W. Review non-ideal projectile impact on targets[J]. Int J Impact Eng, 1999, 22(2/3): 95-395.
    [12] 王礼立.应立波基础[M].北京: 国防工业出版社, 1984: 43-45.

    Wang L L. The Basis of the Stress Wave[M]. Beijing: National Defense Industry Press, 1984: 43-45. (in Chinese)
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  6435
  • HTML全文浏览量:  2191
  • PDF下载量:  447
出版历程
  • 收稿日期:  2013-04-10
  • 修回日期:  2013-06-15

目录

    /

    返回文章
    返回