周期性铜线密排结构的冲击压缩特性研究

龚芸芸 卢纪 谷卓伟 宋振飞 赵士操 莫建军 陶彦辉

龚芸芸, 卢纪, 谷卓伟, 宋振飞, 赵士操, 莫建军, 陶彦辉. 周期性铜线密排结构的冲击压缩特性研究[J]. 高压物理学报, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011
引用本文: 龚芸芸, 卢纪, 谷卓伟, 宋振飞, 赵士操, 莫建军, 陶彦辉. 周期性铜线密排结构的冲击压缩特性研究[J]. 高压物理学报, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011
GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011
Citation: GONG Yun-Yun, LU Ji, GU Zhuo-Wei, SONG Zhen-Fei, ZHAO Shi-Cao, MO Jian-Jun, TAO Yan-Hui. Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 331-338. doi: 10.11858/gywlxb.2014.03.011

周期性铜线密排结构的冲击压缩特性研究

doi: 10.11858/gywlxb.2014.03.011
基金项目: 中国工程物理研究院科学技术发展基金(2012B0201018);国家自然科学基金青年科学基金(11102190)
详细信息
    作者简介:

    龚芸芸(1987—),女,硕士研究生,主要从事流体动力学数值模拟研究.E-mail:gongcloudy@163.com

    通讯作者:

    谷卓伟(1969—),男,博士,研究员,主要从事冲击波与爆轰物理研究.E-mail: guzhw1969@126.com

  • 中图分类号: O521.2; O347.1

Study on the Compression Properties of Periodic Copper Wire Closed-Packed Structure

  • 摘要: 对铜线密排结构材料开展了一维平面应变冲击压缩实验与数值模拟研究。利用激光位移干涉仪测量了样品/窗口界面速度剖面,获取了有效的结构冲击压缩实验数据。从样品界面速度曲线可以推断,密排结构冲击压缩时没有形成致密结构,在卸载过程中发生了分层。应用光滑粒子流体动力学方法(SPH)建立了平面铜线密排结构的三维计算模型,计算得到样品冲击加载下的压缩特性,实验和数值模拟得到的界面速度和压力结果吻合较好, 为后续开展柱面铜线密排结构的冲击压缩过程研究奠定了基础。

     

  • 图  柱面内爆磁通量压缩实验原理图

    Figure  1.  Schematic of cylindrical explosive implosion magnetic flux compression experiment

    图  三级串联式爆炸强磁场等熵加载原理示意图

    Figure  2.  Three cascades schematic of isentropic loading in exploded magnetic field

    图  平板样品铜线密排结构

    Figure  3.  Copper wire closed-packed structure in flat plate

    图  一维平面应变冲击实验

    Figure  4.  One-dimensional strain impact experiment

    图  飞片磁测速原始信号

    Figure  5.  Flyer's magnetic measurement signal

    图  激光干涉条纹原始信号

    Figure  6.  Original laser interference fringes

    图  实验测试速度曲线

    Figure  7.  Tested velocity curves of the four impact experiments

    图  铜线截面SPH粒子建模图

    Figure  8.  Intersection surface of copper wire simulated by SPH particles

    图  样品中铜线排列结构的建模

    Figure  9.  Simulation structure of the copper wire array in the sample

    图  10  AUTODYN软件对冲击过程的数值模拟

    Figure  10.  Numerical simulation of the impact process in AUTODYN

    图  11  计算冲击实验速度曲线

    Figure  11.  Numerical velocity curves of the impact experiments

    图  12  模拟得到的铜线密排结构样品的压力曲线

    Figure  12.  Simulated pressure curves of copper wire closed-packed structure in experiment

    图  13  铜线密排结构平板压缩形貌图

    Figure  13.  Morphologies of copper wire array plane plate in compression process

    表  1  冲击实验中飞片、基板和窗口属性

    Table  1.   Properties of flyer, base board and window in the impact experiment

    Parts Material Diameter
    /(mm)
    Thickness
    /(mm)
    Flyer OFHC 24 2
    Base plate OFHC 25 2
    Window Al2O3 22 6
    下载: 导出CSV

    表  2  4发冲击实验结果

    Table  2.   Experimental data of the four impact experiments

    Exp.No. Sample Measured flyer
    velocity/(km/s)
    Measured velocity
    peak/(km/s)
    Pulse width
    /(ns)
    Interface pressure
    /(GPa)
    Shot 1 4 layers 2.01 1.20 455 47.5
    Shot 2 4 layers 2.48 1.39 440 56.1
    Shot 3 7 layers 2.00 1.19 433 47.1
    Shot 4 7 layers 2.51 1.40 378 56.6
    下载: 导出CSV

    表  3  计算结果与实验结果的比较

    Table  3.   The contrast between experiment results and numerical results

    Exp.No. Numerical velocity peak/(km/s)
    Experiment Numerical Contrast
    Shot 1 1.20 1.10 8.3%
    Shot 2 1.39 1.37 1.4%
    Shot 3 1.19 1.12 5.9%
    Shot 4 1.40 1.38 1.4%
    下载: 导出CSV
  • [1] Hawke R S, Duerre D E, Huebel J G, et al. Method of isentropically compressing materials to several megabars[J]. J Appl Phys, 1972, 43(11): 2734-2741. http://www.nature.com/nature-physci/journal/v233/n39/abs/physci233079a0.html
    [2] Boriskov G V, Belov S I, Bykov A I, et al. Conductivity and permittivity of hydrogen under isentropic magnetic compression up to 3 Mbar[J]. J Low Temp Phys, 2010, 159(1): 307-310. doi: 10.1007/s10909-009-0124-4
    [3] Bykov A I. VNIIEF achievements on ultra-high magnetic fields generation[J]. Phys B, 2002, 294(2): 574-578. http://www.sciencedirect.com/science/article/pii/S0921452600007237
    [4] Bykov A I, Dolotenko M I, Kolokol′chikov N P, et al. The cascade magnetocumulative generator of ultra-high magnetic fields—A reliable tool for megagauss physics[J]. Physica B, 1996, 216(1): 215-217. http://www.sciencedirect.com/science/article/pii/0921452695004750
    [5] 张柱, 赵慧, 于晖.混凝土材料动态力学性能实验与数值模拟研究[J].高压物理学报, 2011, 25(6): 533-538. http://www.cnki.com.cn/Article/CJFDTotal-GYWL201106010.htm

    Zhang Z, Zhao H, Yu H. Experiments and numerical simulations of concrete dynamic mechanical properties[J]. Chinese Journal of High Pressure Physic, 2011, 25(6): 533-538. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL201106010.htm
    [6] 胡时胜, 王道荣, 刘剑飞.混凝土材料动态力学性能的试验研究[J].工程力学, 2001, 8(5): 115-126.

    Hu S S, Wang D R, Liu J F. Experiment study on dynamic mechanical behavior of concrete materials[J]. Engineering Mechanics, 2001, 8(5): 115-126. (in Chinese)
    [7] Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials[J]. Composites, 1996, 27(12): 1123-1131. doi: 10.1016/1359-835X(96)00074-7
    [8] Choi H Y. Damage in grahite-expoxy laminated composites due to low-velocity impact[D]. ProQuest Dissertations and Thesises, 1991.
    [9] Ramadhan A A, Abu Talib A R, Mohd Rafie A S, et al. High velocity impact response of Kevlar-29/epoxy and 6061-T6 aluminum laminated panels[J]. Mater Des, 2013, 43(2): 307-321. http://www.sciencedirect.com/science/article/pii/S0261306912004074
    [10] Silvestrov V V, Plastinin A V, Gorshkov N N. Hypervelocity impact on Laminate composite panels[J]. Int J Impact Eng, 1995, 17: 751-762. doi: 10.1016/0734-743X(95)99897-Z
    [11] Ryan S, Schaefer F, Riedel W. Numerical simulation of hypervelocity impact on CFRP/Al HC SP spacecraft structures causing penetration and fragment ejection[J]. Int J Impact Eng, 2006, 33: 703-712. doi: 10.1016/j.ijimpeng.2006.09.072
    [12] Chen J K, Allahdadi F A, Carney T C. High-velocity impact of graphite/epoxy composite laminates[J]. Compos Sci Technol, 1997, 57(9/10): 1369-1379. http://www.sciencedirect.com/science/article/pii/S0266353897000675
    [13] Clegg R A, White D M, Riedelb W, et al. Hypervelocity impact damage prediction in composites: Part I-material model and characterisation[J]. Int J Impact Eng, 2006, 33: 190-200. doi: 10.1016/j.ijimpeng.2006.09.055
    [14] 赵士操.基于AUTODYN二次开发的超高速碰撞建模与计算[D].绵阳: 中国工程物理研究院, 2012.

    Zhao S C. Hypervelocity impact modeling and calculation of two secondary development based on AUTODYN[D]. Mianyang: China Academy of Engineering Physics, 2012. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  6335
  • HTML全文浏览量:  2092
  • PDF下载量:  244
出版历程
  • 收稿日期:  2013-03-05
  • 修回日期:  2013-09-23

目录

    /

    返回文章
    返回