活塞圆筒装置压力盘样品组装的温度测定和热结构分析

夏莹 丁兴 宋茂双 熊小林 邵同宾 李建峰 郝锡荦

夏莹, 丁兴, 宋茂双, 熊小林, 邵同宾, 李建峰, 郝锡荦. 活塞圆筒装置压力盘样品组装的温度测定和热结构分析[J]. 高压物理学报, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002
引用本文: 夏莹, 丁兴, 宋茂双, 熊小林, 邵同宾, 李建峰, 郝锡荦. 活塞圆筒装置压力盘样品组装的温度测定和热结构分析[J]. 高压物理学报, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002
XIA Ying, DING Xing, SONG Mao-Shuang, XIONG Xiao-Lin, SHAO Tong-Bin, LI Jian-Feng, HAO Xi-Luo. Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002
Citation: XIA Ying, DING Xing, SONG Mao-Shuang, XIONG Xiao-Lin, SHAO Tong-Bin, LI Jian-Feng, HAO Xi-Luo. Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 262-272. doi: 10.11858/gywlxb.2014.03.002

活塞圆筒装置压力盘样品组装的温度测定和热结构分析

doi: 10.11858/gywlxb.2014.03.002
基金项目: 国家自然科学基金重大项目(41090373);国家自然科学基金面上项目(41002021, 41174072, 40772029)
详细信息
    作者简介:

    夏莹(1988—), 女, 硕士研究生, 主要从事高温高压实验岩石学研究. E-mail:xi237@163.com

    通讯作者:

    丁兴(1978-), 男, 博士, 助理研究员, 主要从事实验地球化学研究.E-mail:xding@gig.ac.cn

  • 中图分类号: O521.3

Temperature Determination and Thermal Structure Analysis on the Pressure Assembly of a Piston-Cylinder Apparatus

  • 摘要: 活塞圆筒是目前使用最广泛的固体介质高温高压装置,样品组装方式和组装件的材料类型决定了高压腔体内部的热结构特征。在0.5、1.0、1.5 GPa压力下、800~1 400 ℃范围内,采用改进的双热电偶法、尖晶石反应测温法对QUICKpress型活塞圆筒的13 mm压力盘的样品组装进行了温度测定,通过获得的实验数据并结合傅里叶热传导模拟结果进行了热结构分析。实验结果表明:(1)热峰位置均位于有效石墨炉中心以下,即靠近钢塞一侧,20 ℃温差范围的热点区轴向分布区域大小介于2.8~5.2 mm,其热梯度为7.7~13.0 ℃/mm,而非热点区热梯度为42~83 ℃/mm;(2)随着温度或压力升高,热峰倾向于朝有效石墨炉中心靠拢,同时伴随着炉内热梯度增大和热点区变小,温度的影响更为显著。还对活塞圆筒压力组装的热结构的影响因素及相关问题进行了探讨。

     

  • 图  QUICKpress型活塞圆筒装置压力盘及样品压力组装示意图

    Figure  1.  Schematic diagram of the pressure plate and the sample assembly of a QUICKpress apparatus

    图  QUICKpress活塞圆筒装置13 mm压力组装热电偶温度测定方法示意图: (a)尖晶石反应温度计法测温实验,dTc=-3 mm,dTr=12 mm;(b)双热电偶测温实验,其中dTc=2 mm,dTr=-2 mm或10 mm(dTr1=-2 mm,dTr2=10 mm);(c)双热电偶测温实验的组装[12], dTcdTr分别表示中心热电偶和参比热电偶的位置相对于有效石墨炉中心位置的距离

    Figure  2.  (a) Sample assembly for the experiment of spinel reaction progress thermometer.Tc lies on the position of 3 mm below midpoint of the furnace axis while Tr sits on the position of 12 mm above the midpoint.(b) The assembly of double-TC experiments.Tc is constant on the position (dTc=2 mm) and dTr1=-2 mm and dTr2=10 mm respectively.(c) The assembly of double-TC experiment[12]

    图  13 mm压力组装一个实验产物的中轴面切面的电子背散射图像和成分面分析图

    Figure  3.  BSE image and map analysis of a part of the axial section for an experimental product of the 13 mm pressure assembly

    图  双热电偶法测得的温度(T)及其轴向位置(x)的关系

    Figure  4.  The result of double-thermocouple experiments plotted as T versus distance from the center of the post-experiment effective furnace (x)

    图  1.0 GPa、TTc=1 400 ℃时尖晶石反应温度计获得的温度及尖晶石宽度Δx与压力组装中轴向位置的关系

    Figure  5.  Correlation between distance from the center of the post-experiment effective furnace(x) and temperature as well as width of spinel by spinel reaction thermometer experiment while p=1.0 GPa, TTc=1 400 ℃

    图  傅里叶热传导模拟法获得的QUICKpress装置13 mm压力组装的温度分布曲线

    Figure  6.  Temperature curve for the 13 mm pressure assembly gained by numerical simulation of the Fourier's law of heat conduction

    图  在1.0 GPa、约1 420 ℃温压条件下QUICKpress装置13 mm压力组装中石墨炉实验前后的变化

    Figure  7.  Sketch diagrams of a graphite furnace in the 13 mm pressure assembly before and after the run at 1.0 GPa and about 1 420 ℃

    图  升温与降温过程中TTc测定温度随功率因子的变化

    Figure  8.  Diagram of the variation of control temperature TTc with power factor in temperature-increasing and temperature-decreasing processes

  • [1] Green D H, Hibberson W O, Kovács I, et al. Water and its influence on the lithosphere-asthenosphere boundary[J]. Nature, 2010, 467(7314): 448-451. doi: 10.1038/nature09369
    [2] Boyd F R, England J L. Apparatus for phase equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750 ℃[J]. J Geophys Res, 1960, 65(2): 741-748. doi: 10.1029/JZ065i002p00741
    [3] Watson E B, Wark D A, Price J D, et al. Mapping the thermal structure of solid-media pressure assemblies[J]. Contrib Mineral Petrol, 2002, 142(6): 640-652. doi: 10.1007/s00410-001-0327-4
    [4] Kushiro I. Changes in viscosity and structure of melt of NaAlSi3O8 composition at high pressures[J]. J Geophys Res, 1976, 81(35): 6347-6356. doi: 10.1029/JB081i035p06347
    [5] Walter M J, Thibault Y, Wei K, et al. Characterizing experimental pressure and temperature conditions in multianvil apparatus[J]. Canad J Phys, 1995, 73(5/6): 273-286. doi: 10.1139/p95-039
    [6] Takahashi E. Melting of dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle[J]. J Geophys Res, 1986, 91(B9): 9367-9386. doi: 10.1029/JB091iB09p09367
    [7] Walker D, Agee C B. Ureilite compaction[J]. Meteoritics, 1988, 23(1): 81-91. doi: 10.1111/j.1945-5100.1988.tb00899.x
    [8] Wark D A, Watson E B. Grain-scale channelization of pores due to gradients in temperature or composition of intergranular fluid or melt[J]. J Geophys Res, 2002, 107(B2): 2040-2045. doi: 10.1029/2001JB000365
    [9] Walker D, Lesher C E, Hays J F. Soret separation of lunar liquid[J]. Proc Lunar Planet Sci, 1981, 12B: 991-999. http://adsabs.harvard.edu/abs/1982LPSC...12..991W
    [10] Lesher C E, Walker D. Solution properties of silicate liquids from thermal diffusion experiments[J]. Geochim Cosmochim Ac, 1986, 50: 1397-1411. doi: 10.1016/0016-7037(86)90313-3
    [11] Lesher C E, Walker D. Cumulate maturation and melt migration in a temperature gradient[J]. J Geophys Res, 1988, 93(B9): 10295-10311. doi: 10.1029/JB093iB09p10295
    [12] Pickering J M, Schwab B E, Johnston A D. Off-center hot spots: Double thermocouple determination of the thermal gradient in a 1.27 cm(1/2 in.)CaF2 piston-cylinder furnace assembly[J]. Am Mineral, 1998, 83(3/4): 228-235. http://pubs.geoscienceworld.org/msa/ammin/article-pdf/83/3-4/228/3613586/228.pdf
    [13] Watson E B, Wark D A. Diffusion of dissolved SiO2 in H2O at 1 GPa, with implications for mass transport in the crust and upper mantle[J]. Contrib Mineral Petrol, 1997, 130(1): 66-80. doi: 10.1007/s004100050350
    [14] Kyser T K, Lesher C E, Walker D. The effects of liquid immiscibility and thermal diffusion on oxygen isotopes in silicate liquids[J]. Contrib Mineral Petrol, 1998, 133(4): 373-381. doi: 10.1007/s004100050459
    [15] Yang X S, J Z M, Ernst H, et al. Experimental study on dehydration melting of natural biotite-plagioclase gneiss from high Himalayas and implications for Himalayan crust anatexis[J]. Chin Sci Bullet, 2001, 46(10): 867-871. doi: 10.1007/BF02900441
    [16] Richter F M, Watson E B, Mendybaev R A, et al. Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion[J]. Geochim Cosmochim Ac, 2008, 72(1): 206-220. doi: 10.1016/j.gca.2007.10.016
    [17] Ding X, Sun W D, Huang F, et al. Different mobility of Nb and Ta along a thermal gradient[J]. Geochim Cosmochim Ac, 2007, 71(15): A226. http://www.irgrid.ac.cn/handle/1471x/339871
    [18] Huang F, Lundstrom C. Chemical and isotopic fractionation of wet andesite in a temperature gradient: Experiments and models suggesting a new mechanism of magma differentiation[J]. Geochim Cosmochim Ac, 2009, 73(3): 729-749. doi: 10.1016/j.gca.2008.11.012
    [19] Huang F, Chakraborty P, Lundstrom C, et al. Isotope fractionation in silicate melts by thermal diffusion[J]. Nature, 2010, 464(7287): 396-400. doi: 10.1038/nature08840
    [20] Ding X, Lundstrom C, Huang F, et al. Natural and experimental constraints on formation of the continental crust based on niobium-tantalum fractionation[J]. Int Geolog Rev, 2009, 51(6): 473-501. doi: 10.1080/00206810902759749
    [21] Cohen L H, Ito K, Kennedy G C. Melting and phase relations in an anhydrous basalt to 40 kilobars[J]. Am J Sci, 1967, 265(6): 475-518. doi: 10.2475/ajs.265.6.475
    [22] Dunn T. The piston-cylinder apparatus[C]//Luth R W. Experiments at High Pressure and Applications to the Earth's Mantle, MAC Short Course Handbook(Vol. 21). Mineralogical Association of Canada, 1993: 39-94.
    [23] Hudon P, Baker D R, Toft P B. A high-temperature assembly for 1.91 cm(3/4 in.)piston-cylinder apparatus[J]. Am Mineral, 1994, 79(1/2): 145-147. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9412160397&site=ehost-live
    [24] 韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的围压标定[J].高压物理学报, 2011, 25(3): 213-220. http://www.cnki.com.cn/Article/CJFDTotal-GYWL200906003.htm

    Han L, Zhou Y S, He C R, et al. Confined pressure calibration for 3 GPa molten salt medium triaxial pressure vessel under high pressure and temperature[J]. Chinese Journal of High Pressure Physics, 2011, 25(3): 213-220. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-GYWL200906003.htm
    [25] 韩亮, 周永胜, 何昌荣, 等. 3 GPa熔融盐固体介质高温高压三轴压力容器的温度标定[J].高压物理学报, 2009, 23(6): 407-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200906002

    Han L, Zhou Y S, He C R, et al. Temperature calibration for 3 GPa molten salt medium triaxial pressure vessel[J]. Chinese Journal of High Pressure Physics, 2009, 23(6): 407-414. (in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gywlxb200906002
    [26] Nickel K G, Brey G P. Subsolidus orthoproxene-clinopyroxene systematics in the system CaO-MgO-SiO2 to 60 kb: A re-evaluation of the regular solution mode[J]. Contrib Mineral Petrol, 1984, 87(1): 35-42. doi: 10.1007/BF00371400
    [27] Schilling F R, Wunder B. Temperature distribution in piston-cylinder assemblies: Numerical simulations and laboratory experiments[J]. Eur J Mineral, 2004, 16(1): 7-14. http://adsabs.harvard.edu/abs/2004EJMin..16....7S
    [28] Kawashima Y, Yagi T. Temperature distribution in a cylindrical furnace for high-pressure use[J]. Rev Sci Instrum, 1988, 59(7): 1186-1188. doi: 10.1063/1.1139747
    [29] 丁兴.俯冲工厂与大陆地壳的形成演化: 来自部分指示性元素活动性及高温高压实验的制约[D].广州: 中国科学院广州地球化学研究所, 2009.

    Ding X. Subduction factory and formation of the continental crust: Constraints from mobilities of indicative elements and high pressure experiment[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2009. (in Chinese)
    [30] Watson E B, Price J D. Kinetics of the reaction MgO+Al2O3→MgAl2O4 and Al-Mg interdiffusion in spinel at 1200 to 2000 ℃ and 1.0 to 4.0 GPa[J]. Geochim Cosmochim Ac, 2002, 66(15): 2123-2138. http://www.sciencedirect.com/science/article/pii/S001670370200827X
    [31] Powell R W, Ho C Y, Liley P E. Thermal conductivity of selected materials, ADD 095251[R]. Washington D C, USA: National Bureau of Standards, 1966.
  • 加载中
图(8)
计量
  • 文章访问数:  6720
  • HTML全文浏览量:  1713
  • PDF下载量:  302
出版历程
  • 收稿日期:  2012-11-05
  • 修回日期:  2013-01-07

目录

    /

    返回文章
    返回