AD95陶瓷破坏波问题的实验研究

孙占峰 贺红亮 李平 李庆忠

孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷破坏波问题的实验研究[J]. 高压物理学报, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001
引用本文: 孙占峰, 贺红亮, 李平, 李庆忠. AD95陶瓷破坏波问题的实验研究[J]. 高压物理学报, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001
SUN Zhan-Feng, HE Hong-Liang, LI Ping, LI Qing-Zhong. Experimental Study on the Problem of Failure Wave in AD95 Ceramics[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001
Citation: SUN Zhan-Feng, HE Hong-Liang, LI Ping, LI Qing-Zhong. Experimental Study on the Problem of Failure Wave in AD95 Ceramics[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 129-136. doi: 10.11858/gywlxb.2014.02.001

AD95陶瓷破坏波问题的实验研究

doi: 10.11858/gywlxb.2014.02.001
基金项目: 国家自然科学基金重点项目(10632080)
详细信息
    作者简介:

    孙占峰(1976—), 男,博士,副研究员,主要从事冲击波与爆轰物理研究.E-mail:sunzf7695@163.com

    通讯作者:

    贺红亮(1963—), 男,博士,研究员,主要从事高压材料科学与力学研究.E-mail: honglianghe@263.net

  • 中图分类号: O521.2; O346.1

Experimental Study on the Problem of Failure Wave in AD95 Ceramics

  • 摘要: 采用激光速度干涉技术,连续测量了AD95氧化铝陶瓷在一维应变冲击压缩下的自由面速度剖面,通过对速度剖面特征的分析,讨论了AD95陶瓷等脆性材料在冲击压缩下是否存在破坏波现象及其与材料特性的关系。研究结果表明:冲击加载应力在4.4~7.3 GPa范围,即从小于到略大于雨贡纽弹性极限(约5.5 GPa),在AD95陶瓷的自由面速度剖面中都未出现表征破坏波现象的二次加载信号,表明未发生破坏波形式的严重压缩损伤;但是,自由面速度剖面中特征点的规律性时序关系和前沿弥散特征都表明,在所讨论的加载应力范围内, AD95陶瓷材料发生了一定程度的压缩损伤;断裂韧性是影响材料在冲击压缩下是否发生破坏波现象的重要因素,断裂韧性较低,冲击波加载下易于形成大量微裂纹扩展和贯通,使材料发生“粉碎性”的严重破坏,是产生破坏波现象的重要条件之一。

     

  • 图  实验装置示意图

    Figure  1.  Schematic of experimental setup

    图  应力波波系分析图

    Figure  2.  Analysis of stress wave system

    (a) Failure wave did not happen (b) Failure wave happened

    图  不同加载应力下的样品自由面速度剖面特征

    Figure  3.  Characteristics of free surface velocity profile under different impact stresses

    (a) Failure wave did not happen (b) Failure wave happened

    图  AD95陶瓷自由面速度剖面(箭头所指为下降信号)

    Figure  4.  Velocity profiles of AD95 ceramics (The arrows point to drop signals)

    图  AOW岩石自由面速度剖面[8-9](箭头所指为再加载信号)

    Figure  5.  Velocity profiles of AOW rocks[8-9] (The arrows point to reload signals)

    图  玻璃、岩石和氧化铝陶瓷材料的断裂韧性KⅠC比较

    Figure  6.  Comparison of fracture toughness KⅠC of glass, rock and alumina

    表  1  实验状态

    Table  1.   Experimental states

    Shot No. Thickness of flyer/(mm) Thickness of sample/(mm) Impact velocity/(m/s) Impact stress/(GPa)
    080916 8 6.06 229 4.4
    100707 10 10.03 260 4.9
    080304 8 6.10 314 5.7
    080912 8 4.10 467 7.3
    下载: 导出CSV

    表  2  速度曲线的特征点时间分析

    Table  2.   Time analysis of characteristic points in velocity curves

    Shot No. Impact stress/(GPa) Δt1, cal/(μs) Δt1, exp/(μs) Δt1, expt1, cal/(μs)
    080916 4.4 1.23 1.28 0.05
    100707 4.9 2.03 2.14 0.11
    080304 5.7 1.23 1.26 0.03
    080912 7.3 0.83 0.87 0.04
    下载: 导出CSV
  • [1] Rasorenov S V, Kanel G I, Fortov V E, et al. The fracture of glass under high-pressure impulsive loading[J]. High Press Res, 1991, 6: 225-232. doi: 10.1080/08957959108202508
    [2] Kanel G I, Rasorenov S V, Fortov V E. The failure waves and spallations in homogeneous brittle materials[C]//Schmidt S C, Dick R D, Forbes J W, et al. Shock Compression of Condensed Matter-1991. Amsterdam: ElsevierScience Publishers B V, 1992: 451-454.
    [3] Brar N S, Bless S J, Rosenberg Z. Impact-induced failure waves in glass bars and plates[J]. Appl Phys Lett, 1991, 59: 3396-3398. doi: 10.1063/1.105686
    [4] Brar N S, Rosenberg Z, Bless S J. Spall strength and failure waves in glass[J]. J Phys Ⅳ, 1991, 1(C3): 639-642. http://www.researchgate.net/publication/45847522_spall_strength_and_failure_waves_in_glass
    [5] 贺红亮.冲击波极端条件下脆性介质的力学响应特性及其细观结构破坏特征[D].绵阳: 中国工程物理研究院, 1997.

    He H L. Dynamic response and microstructure damage of brittle materials under shock wave compression[D]. Mianyang: China Academy of Engineering Physics, 1997. (in Chinese)
    [6] 章冠人.冲击压缩脆性材料中破碎波的几个问题[J].高压物理学报, 1998, 12(2): 81-86. http://www.cqvip.com/QK/96553X/199802/3079688.html

    Zhang G R. Some problems of fracture waves in brittle materials under shock loading[J]. Chinese Journal of High Pressure Physics, 1998, 12(2): 81-86. (in Chinese) http://www.cqvip.com/QK/96553X/199802/3079688.html
    [7] 刘占芳, 常敬臻, 姚国文, 等.冲击压缩下氧化铝陶瓷中破坏阵面的传播[J].力学学报, 2006, 38(5): 626-632. http://www.cnki.com.cn/Article/CJFDTotal-LXXB200605008.htm

    Liu Z F, Chang J Z, Yao G W, et al. Propagation of failure front in shock-loaded polycrystalline alumina[J]. Appl Math Mech, 2006, 38(5): 626-632. (in Chinese) http://www.cnki.com.cn/Article/CJFDTotal-LXXB200605008.htm
    [8] 陈登平, 贺红亮, 黎明发, 等.冲击压缩下非均匀脆性固体的弛豫破坏波研究[J].物理学报, 2007, 56(1): 423-428. http://d.wanfangdata.com.cn/Periodical/wlxb200701069

    Chen D P, He H L, Li M F, et al. A delayed failure of inhomogenous brittle material under shock wave compression[J]. Acta Phys Sin, 2007, 56(1): 423-428. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb200701069
    [9] Chen D P, He H L, Jing F Q. Delayed failure of the shock compressed inhomogeneous brittle material[J]. J Appl Phys, 2007, 102: 033519. doi: 10.1063/1.2767228
    [10] Rosenberg Z, Yeshurun Y. Determination of the dynamic response of AD-85 alumina with in-material manganin gauges[J]. J Appl Phys, 1985, 58(8): 3077-3080. doi: 10.1063/1.335807
    [11] Grady D E. Shock-wave compression of brittle solids[J]. Mech Mater, 1998, 29: 181-203. doi: 10.1016/S0167-6636(98)00015-5
    [12] Bourne N K, Gray G T Ⅲ. On the failure of boron carbide under shock[C]//Shock Compression of Condensed Matter Meeting. Atlanta, Georgia, 2001.
    [13] Pickup I M, Barker A K. Deviatoric strength of silicon carbide subject to shock[J]. AIP Conf Proc, 2000, 505: 573-576. doi: 10.1063/1.1303539
    [14] Pickup I M, Bourne N K. The failure aluminum nitride under shock[C]//Shock Compression of Condensed Matter Meeting. Atlanta, Georgia, 2001.
    [15] Millett J C F, Bourne N K, Pickup I M. The behaviour of a SiO2-Li2O glass ceramic during one-dimensional shock loading[J]. J Appl Phys, 2005, 38(18): 3530-3536. http://adsabs.harvard.edu/abs/2005JPhD...38.3530M
    [16] Grady D E. Dynamic failure of brittle solids, SAND-94-0777C[R]. Albuquerque, US: Sandia National Labs, 1994.
    [17] Grady D E, Moody R L. Shock compression profiles in ceramics, SAND-96-0551[R]. Albuquerque, US: Sandia National Labs, 1996.
    [18] Grady D E. Shock-wave properties of brittle solids[J]. AIP Conf Proc, 1996, 370: 9-20. doi: 10.1063/1.50579
    [19] Murray N H, Millett J C F, Proud W G, et al. Issues surrounding lateral stress measurements in alumina ceramics[J]. AIP Conf Proc, 2000, 505: 581-584. doi: 10.1063/1.1303541
    [20] Field J E, Tsembelis K, Brar N S, et al. Issues related to lateral stress measurements in alumina ceramics[J]. AIP Conf Proc, 2004, 706: 1151-1154. doi: 10.1063/1.1780442
    [21] 孙占峰, 贺红亮, 李平, 等. AD95陶瓷的层裂强度及冲击压缩损伤机理研究[J].物理学报, 2012, 61(9): 096201. http://d.wanfangdata.com.cn/Periodical/wlxb201209054

    Sun Z F, He H L, Li P, et al. The spall strength and shock compressive damage of AD95 ceramics[J]. Acta Phys Sin, 2012, 61(9): 096201. (in Chinese) http://d.wanfangdata.com.cn/Periodical/wlxb201209054
    [22] Sun Z F, Xu H, Li P, et al. The response of AD95 alumina to low pressure impact[J]. Int J Nonlin Sci Numer Simulat, 2010, 11(sup): 0247-0251. http://www.degruyter.com/view/j/ijnsns.2010.11.s1/ijnsns.2010.11.s1.247/ijnsns.2010.11.s1.247.xml?format=INT
    [23] 孙占峰.氧化铝陶瓷冲击压缩损伤及残余强度实验研究[D].绵阳: 中国工程物理研究院, 2012.

    Sun Z F. Experimental study on shock compressive damage and residual strength of alumina ceramics[D]. Mianyang: China Academy of Engineering Physics, 2012. (in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  7231
  • HTML全文浏览量:  2202
  • PDF下载量:  302
出版历程
  • 收稿日期:  2013-05-15
  • 修回日期:  2013-07-22

目录

    /

    返回文章
    返回