发酵与动态高压微射流对豆渣膳食纤维理化特性的影响

涂宗财 陈丽莉 王辉 尹月斌 阮传英 张兰 柳军凯 张璆

涂宗财, 陈丽莉, 王辉, 尹月斌, 阮传英, 张兰, 柳军凯, 张璆. 发酵与动态高压微射流对豆渣膳食纤维理化特性的影响[J]. 高压物理学报, 2014, 28(1): 113-119. doi: 10.11858/gywlxb.2014.01.019
引用本文: 涂宗财, 陈丽莉, 王辉, 尹月斌, 阮传英, 张兰, 柳军凯, 张璆. 发酵与动态高压微射流对豆渣膳食纤维理化特性的影响[J]. 高压物理学报, 2014, 28(1): 113-119. doi: 10.11858/gywlxb.2014.01.019
TU Zong-Cai, CHEN Li-Li, WANG Hui, YIN Yue-Bin, RUAN Chuan-Ying, ZHANG Lan, LIU Jun-Kai, ZHANG Qiu. Effects of Fermentation and Dynamic High Pressure Microfluidization on Physicochemical Properties of Dietary Fiber in Soybean Residue[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 113-119. doi: 10.11858/gywlxb.2014.01.019
Citation: TU Zong-Cai, CHEN Li-Li, WANG Hui, YIN Yue-Bin, RUAN Chuan-Ying, ZHANG Lan, LIU Jun-Kai, ZHANG Qiu. Effects of Fermentation and Dynamic High Pressure Microfluidization on Physicochemical Properties of Dietary Fiber in Soybean Residue[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 113-119. doi: 10.11858/gywlxb.2014.01.019

发酵与动态高压微射流对豆渣膳食纤维理化特性的影响

doi: 10.11858/gywlxb.2014.01.019
基金项目: 国家自然科学基金(20976078)
详细信息
    作者简介:

    涂宗财(1965-), 男, 博士, 教授, 主要从事食物资源开发与利用研究.E-mail:tuzc_mail@aliyun.com

  • 中图分类号: O521.9;TS209

Effects of Fermentation and Dynamic High Pressure Microfluidization on Physicochemical Properties of Dietary Fiber in Soybean Residue

  • 摘要: 采用乳酸菌发酵结合动态高压微射流(Dynamic High Pressure Microfluidization,DHPM)技术,对豆渣进行改性,探讨其对膳食纤维组成、水化性质、持油力、胆汁酸结合能力及阳离子交换能力的影响。结果表明:乳酸菌发酵和DHPM均可有效提高豆渣中可溶性膳食纤维的含量,并降低不可溶性膳食纤维的含量,使可溶性与不可溶性膳食纤维含量的比值最大达到1:2.6;乳酸菌发酵和DHPM能明显改善膳食纤维的水化性质和持油力,但对阳离子交换能力的影响不显著;乳酸菌发酵使豆渣膳食纤维结合胆汁酸的能力下降,而DHPM则使之升高。乳酸菌发酵和DHPM可以作为提高膳食纤维生理功能的有效途径。

     

  • 表  1  DHPM对发酵前、后豆渣膳食纤维(干基)含量的影响

    Table  1.   Effect of DHPM on dietary fiber content from soybean residues (dry matter) before and after fermentation

    Sample DHPM pressure/(MPa) wTDF/(%) wSDF/(%) wIDF/(%) wSDF:wIDF
    Non-fermentation 0 85.68±1.15ab 6.79±0.28a 78.84±1.19ef 1:11.6
    50 85.11±0.91ab 8.72±0.40b 76.60±0.85de 1:8.8
    100 85.17±1.17ab 11.45±0.64c 74.07±1.03cd 1:6.5
    150 85.10±1.28ab 14.30±0.42d 70.80±0.86bc 1:5.1
    200 84.52±0.69a 14.99±0.72d 69.77±1.75b 1:4.7
    Fermentation 0 91.02±1.45c 10.39±0.55bc 80.63±0.89f 1:7.8
    50 90.62±1.17c 14.82±0.96d 76.11±0.79de 1:5.1
    100 90.74±1.77c 19.74±1.05e 71.39±0.59bc 1:3.6
    150 89.99±2.38bc 23.34±0.50f 66.54±2.04a 1:2.9
    200 89.13±2.05abc 25.21±1.36f 65.07±1.17a 1:2.6
    Note:Means within a column with different letters are significantly different (P≤0.05).
    下载: 导出CSV

    表  2  DHPM对发酵前、后豆渣膳食纤维(干基)性质的影响

    Table  2.   Effect of DHPM on properties of dietary fiber from soybean residues (dry matter) before and after fermentation

    Sample DHPM pressure/(MPa) aSC/(mL/g) aWHC aOHC
    Non-fermentation 0 5.66±0.16a 6.04±0.06a 3.54±0.04a
    50 7.79±0.20b 6.69±0.10b 4.20±0.11b
    100 8.34±0.27c 6.61±0.06b 4.39±0.06c
    150 8.50±0.01cd 7.30±0.06c 5.15±0.17ef
    200 8.55±0.14cd 7.90±0.09d 5.32±0.06f
    Fermentation 0 8.32±0.11c 7.92±0.05d 4.62±0.11d
    50 8.83±0.21d 8.50±0.06e 5.03±0.07e
    100 9.21±0.20e 8.63±0.11e 5.28±0.11f
    150 9.45±0.18e 9.19±0.17f 6.17±0.20g
    200 9.57±0.25e 9.89±0.10g 6.83±0.06h
    Note:Means within a column with different letters are significantly different (P≤0.05).
    下载: 导出CSV

    表  3  DHPM对发酵前、后豆渣膳食纤维(干基)结合胆汁酸能力及阳离子交换能力的影响

    Table  3.   Effect of DHPM on bile acid binding capacity and cation exchange capacity of dietary fiber from soybean residues (dry matter) before and after fermentation

    Sample DHPM pressure/(MPa) aBABC/(mmol/100 mg) aCEC/(mmol/100 mg)
    Non-fermentation 0 3.08±0.06b 0.605±0.081a
    50 3.80±0.17c 0.618±0.056a
    100 4.04±0.75c 0.593±0.097a
    150 3.99±0.69c 0.607±0.002a
    200 4.31±0.40c 0.633±0.061a
    Fermentation 0 2.09±0.33a 0.636±0.051a
    50 3.13±0.06bc 0.451±0.026a
    100 3.27±0.49bc 0.454±0.019a
    150 3.65±0.42c 0.578±0.020a
    200 3.40±0.11bc 0.447±0.067a
    Note:Means within a column with different letters are significantly different (P≤0.05).
    下载: 导出CSV
  • [1] Kushi L H, Meyer K A, Jacobs D R. Cereals, legumes, and chronic disease risk reduction: Evidence from epidemiologic studies[J]. Am J Clin Nutr, 1999, 70(Supplement): 451-458.
    [2] Chandalia M, Garg A, Lutjohann D, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus[J]. N Engl J Med, 2000, 342(19): 1392-1398. doi: 10.1056/NEJM200005113421903
    [3] Bosaeus I. Fibre effects on intestinal functions(diarrhoea, constipation and irritable bowel syndrome)[J]. Clin Nutr Suppl, 2004, 1(2): 33-38. doi: 10.1016/j.clnu.2004.09.006
    [4] Champ M, Langkilde A M, Brouns F, et al. Advances in dietary fibre characterisation. 1. Definition of dietary fibre, physiological relevance, health benefits and analytical aspects[J]. Nutr Res Rev, 2003, 16(1): 71-82. doi: 10.1079/NRR200254
    [5] Liu K S. Soybeans: Chemistry, Technology and Utilization[M]. Gaithersburg, Maryland, USA: Aspen Publishers Inc., 1999: 25-113.
    [6] Goi I, Martín-Carrón N. In vitro fermentation and hydration properties of commercial dietary fiber-rich supplements[J]. Nutr Res, 1998, 18(6): 1077-1089. doi: 10.1016/S0271-5317(98)00090-6
    [7] Jenkins D J, Kendall C W, Augustin L S, et al. Glycemic index: Overview of implications in health and disease[J]. Am J Clin Nutr, 2002, 76(1): 266-273. doi: 10.1093/ajcn/76.1.266S
    [8] Lukaczer D, Liska D J, Lerman R H, et al. Effect of a low glycemic index diet with soy protein and phytosterols on CVD risk factors in postmenopausal women[J]. Nutrition, 2006, 22(2): 104-113. doi: 10.1016/j.nut.2005.05.007
    [9] Grigelmo-Miguel N, Martin-Belloso O. Comparison of dietary fibre from by-products of processing fruits and greens and from cereals[J]. LWT-Food Sci Tech, 1999, 32(8): 503-508. doi: 10.1006/fstl.1999.0587
    [10] Sangnark A, Noomhorm A. Chemical, physical and baking properties of dietary fiber prepared from rice straw[J]. Food Res Int, 2004, 37(1): 66-74. doi: 10.1016/j.foodres.2003.09.007
    [11] Raghavendra S N, Swamy S R, Rastogi N K, et al. Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber[J]. J Food Eng, 2006, 72(3): 281-286. doi: 10.1016/j.jfoodeng.2004.12.008
    [12] Lambo A M, Öste R, Nyman M E G L. Dietary fibre in fermented oat and barley β-glucan rich concentrates[J]. Food Chem, 2005, 89(2): 283-293. doi: 10.1016/j.foodchem.2004.02.035
    [13] 涂宗财, 朱秀梅, 陈钢, 等.动态超高压微射流对糯米淀粉结构的影响[J].光谱学与光谱分析, 2010, 30(3): 834-837.

    Tu Z C, Zhu X M, Chen G, et al. Effects of dynamic high-pressure microfluidization on the structure of waxy rice starch[J]. Spectroscopy and Spectral Analysis, 2010, 30(3): 834-837. (in Chinese)
    [14] 万婕, 刘成梅, 蓝海军, 等.动态瞬时高压作用对膳食纤维酶解速度的影响[J].高压物理学报, 2008, 22(4): 439-444.

    Wan J, Liu C M, Lan H J, et al. Effects of dynamic instantaneous high pressure treatment on the enzymolysis rate of dietary fiber[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 439-444. (in Chinese)
    [15] Chen J, Liang R H, Liu W, et al. Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism[J]. Food Hydrocolloid, 2012, 28(1): 121-129. doi: 10.1016/j.foodhyd.2011.12.018
    [16] Association of Official Analytical Chemists. Official Methods of Analysis(Method 991.43)[M]. 16th Ed. Washington D C, USA: Association of Official Analytical Chemists, 1995.
    [17] Robertson J A, de Monredon F D, Dysseler P, et al. Hydration properties of dietary fibre and resistant starch: A European collaborative study[J]. LWT-Food Sci Tech, 2000, 33(2): 72-79. doi: 10.1006/fstl.1999.0595
    [18] Kahlon T S, Woodruff C L. In vitro binding of bile acids by rice bran, oat Bran, barley and β-glucan enriched barley[J]. Cereal Chem, 2003, 80(3): 260-263. doi: 10.1094/CCHEM.2003.80.3.260
    [19] Jiménez A, Rodríguez R, Fernndez-Caro I, et al. Dietary fibre content of table olives processed under different European styles: Study of physico-chemical characteristics[J]. J Sci Food Agr, 2000, 80(13): 1903-1908. doi: 10.1002/1097-0010(200010)80:13<1903::AID-JSFA720>3.0.CO;2-N
    [20] 刘成梅.瞬时高压作用的机制及杀菌和纤维改性研究[D].南昌: 南昌大学, 2006: 91-92.

    Liu C M. Instantaneous high pressure process: Its sterilization mechanisms and effect on quality improvement and property changes of dietary fiber[D]. Nanchang: Nanchang University, 2006: 91-92. (in Chinese)
    [21] Johansson C G. Enzymatic, gravimetric analysis of dietary fibre[D]. Lund, Sweden: Lund University, 1987.
    [22] Cadden A M. Comparative effects of particle size reduction on physical structure and water binding properties of several plant fibers[J]. J Food Sci, 1987, 52(6): 1595-1599. doi: 10.1111/j.1365-2621.1987.tb05886.x
    [23] 李凤.超高压处理对大豆膳食纤维的改性[J].大豆科学, 2008, 27(1): 141-144.

    Li F. Modifying soybean dietary fiber by ultra high pressure treatment[J]. Soybean Science, 2008, 27(1): 141-144. (in Chinese)
    [24] Yeh H Y, Su N W, Lee M H. Chemical compositions and physicochemical properties of the fiber-rich materials prepared from shoyu mash residue[J]. J Agric Food Chem, 2005, 53(11): 4361-4366. doi: 10.1021/jf050243g
    [25] 钟耀广.功能性食品[M].北京: 化学工业出版社, 2004: 35-37.

    Zhong Y G. Functional Food[M]. Beijing: Chemical Industry Press, 2004: 35-37. (in Chinese)
    [26] Kahlon T S, Smith G E. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines[J]. Food Chem, 2007, 101(3): 1046-1051. doi: 10.1016/j.foodchem.2006.02.059
    [27] Cornfine C, Hasenkopf K, Eisner P, et al. Influence of chemical and physical modification on the bile acid binding capacity of dietary fibre from lupins(Lupinus angustifolius L.)[J]. Food Chem, 2010, 122(3): 638-644. doi: 10.1016/j.foodchem.2010.03.024
    [28] Chau C F, Huang Y L. Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. Cv. Liucheng[J]. J Agric Food Chem, 2003, 51(9): 2615-2618. doi: 10.1021/jf025919b
  • 加载中
表(3)
计量
  • 文章访问数:  6915
  • HTML全文浏览量:  1942
  • PDF下载量:  350
出版历程
  • 收稿日期:  2012-04-08
  • 修回日期:  2012-06-11

目录

    /

    返回文章
    返回