燃气浓度对室内燃气爆燃火焰波及范围的影响

庞磊 高建村 李磊 马秋菊 亢永 孟倩倩

庞磊, 高建村, 李磊, 马秋菊, 亢永, 孟倩倩. 燃气浓度对室内燃气爆燃火焰波及范围的影响[J]. 高压物理学报, 2014, 28(1): 55-60. doi: 10.11858/gywlxb.2014.01.009
引用本文: 庞磊, 高建村, 李磊, 马秋菊, 亢永, 孟倩倩. 燃气浓度对室内燃气爆燃火焰波及范围的影响[J]. 高压物理学报, 2014, 28(1): 55-60. doi: 10.11858/gywlxb.2014.01.009
PANG Lei, GAO Jian-Cun, LI Lei, MA Qiu-Ju, KANG Yong, MENG Qian-Qian. Influence of Gas Concentration on Flame Spread Range Generated from Indoor Deflagration of Natural Gas[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 55-60. doi: 10.11858/gywlxb.2014.01.009
Citation: PANG Lei, GAO Jian-Cun, LI Lei, MA Qiu-Ju, KANG Yong, MENG Qian-Qian. Influence of Gas Concentration on Flame Spread Range Generated from Indoor Deflagration of Natural Gas[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 55-60. doi: 10.11858/gywlxb.2014.01.009

燃气浓度对室内燃气爆燃火焰波及范围的影响

doi: 10.11858/gywlxb.2014.01.009
基金项目: 国家自然科学基金(11072035);北京市自然科学基金(8132029)
详细信息
    作者简介:

    庞磊(1982-), 男, 博士, 主要从事爆炸安全理论研究.E-mail:panglei0525@163.com

  • 中图分类号: O382.1

Influence of Gas Concentration on Flame Spread Range Generated from Indoor Deflagration of Natural Gas

  • 摘要: 高温火焰峰面是室内燃气爆燃事故中最主要的致害因素之一,火焰峰面的波及范围在很大程度上反映了事故的危险区域及事故的严重性。借助计算流体力学技术,结合某室内燃气泄漏爆燃事故,对不同燃气浓度下室内燃气爆燃过程,尤其是火焰波及范围,进行了深入研究。研究结果表明,燃气浓度对火焰波及范围有显著影响,浓度越大,火焰波及范围越大。这是由于在富含燃料而氧气不足的条件下,大量未燃燃料在前导冲击波和湍流作用下进一步运移和扩散,加剧了火焰的进一步延伸,从而导致火焰区的扩大。

     

  • 图  计算域平面简图

    Figure  1.  Plane sketch of computational domain

    图  不同甲烷浓度时各观测点的峰值超压

    Figure  2.  Peak overpressure on observation points under different concentrations of methane

    图  不同甲烷浓度时外门附近冲击波超压随时间的变化

    Figure  3.  Shockwave overpressure versus time near outer door under different concentrations of methane

    图  不同甲烷浓度条件下内门附近燃烧率随时间的变化

    Figure  4.  Combustion rate versus time near inner door under different concentrations of methane

    图  不同甲烷浓度条件下外门附近燃烧率随时间的变化

    Figure  5.  Combustion rate versus time near outer door under different concentrations of methane

    图  不同甲烷浓度条件下内门附近甲烷质量分数随时间的变化

    Figure  6.  Mass fraction of methane versus time near inner door under different concentrations of methane

    图  不同甲烷浓度条件下外门附近甲烷质量分数随时间的变化

    Figure  7.  Mass fraction of methane versus time near outer door under different concentrations of methane

    图  不同甲烷浓度条件下内门附近温度随时间的变化

    Figure  8.  Temperature versus time near inner door under different concentrations of methane

    图  不同甲烷浓度条件下外门附近温度随时间的变化

    Figure  9.  Temperature versus time near outer door under different concentrations of methane

  • [1] 于津平.爆燃和爆炸概念的含义[J].爆破器材, 1991, 61: 30-31.

    Yu J P. Implications of deflagration and explosion[J]. Explosive Materials, 1991, 61: 30-31. (in Chinese)
    [2] 彭世尼, 周廷鹤.燃气泄漏与扩散模型的探讨[J].煤气与热力, 2008, 28(11): 9-12.

    Peng S N, Zhou T H. Discussion on models for gas leakage and diffusion[J]. Gas & Heat, 2008, 28(11): 9-12. (in Chinese)
    [3] 张甫仁, 徐湃.燃气管道非稳态泄漏及扩散的模拟[J].哈尔滨工业大学学报, 2009, 41(5): 201-204.

    Zhang F R, Xu P. Numerical simulation of unsteady leakage and diffusion of gas pipeline[J]. Journal of Harbin Institute of Technology, 2009, 41(5): 201-204. (in Chinese)
    [4] 吴晋湘, 牛坤, 闫运忠.燃气连续性泄漏扩散规律的研究[J].河北工业大学学报, 2007, 36(3): 1-6.

    Wu J X, Niu K, Yan Y Z. Study on the continuous release and dispersion rule of flammable gas[J]. Journal of Hebei University of Technology, 2007, 36(3): 1-6. (in Chinese)
    [5] 韩永利, 陈洋, 陈龙珠.基于LS-DYNA的墙体抗燃气爆炸能力数值分析[J].防灾减灾工程学报, 2010, 30(3): 298-302.

    Han Y L, Chen Y, Chen L Z. Simulation on anti-blast ability of masonry wall under gas explosion load based on LS-DYNA[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(3): 298-302. (in Chinese)
    [6] Han Y L, Chen L Z. Mechanical model of domestic gas explosion load[J]. Trans Tianjin Univ, 2008, 14(6): 434-440. doi: 10.1007/s12209-008-0075-x
    [7] 韩永利, 陈龙珠, 陈洋.民用住宅墙体抗燃气爆炸能力的数值模拟研究[J].建筑科学, 2010, 26(9): 49-53.

    Han Y L, Chen L Z, Chen Y. Numerical analysis of civil house wall under gas explosion load[J]. Building Science, 2010, 26(9): 49-53. (in Chinese)
    [8] 毕明树, 王淑兰, 丁信伟, 等.无约束气云弱点火爆炸压力实验研究[J].化工学报, 2001, 52(1): 68-71.

    Bi M S, Wang S L, Ding X W, et al. Experimental study on explosion pressures of unrestricted gas cloud explosions[J]. Journal of Chemical Industry and Engineering, 2001, 52(1): 68-71. (in Chinese)
    [9] 杨国刚, 岳丹婷, 毕明树.圆柱形可燃气云爆炸实验研究与数值模拟[J].化工学报, 2008, 59(11): 2954-2959.

    Yang G G, Yue D T, Bi M S. Experimental and numerical study on cylindrical flammable gas cloud explosion[J]. Journal of Chemical Industry and Engineering, 2008, 59(11): 2954-2959. (in Chinese)
    [10] Zhang Q, Qin B, Lin D C. Estimation of pressure distribution for shock wave through the bend of bend laneway[J]. Saf Sci, 2010, 48(10): 1263-1268. doi: 10.1016/j.ssci.2010.04.003
    [11] Starke R, Roth P. An experimental investigation of flame behavior during explosions in cylindrical enclosures with obstacles[J]. Combust Flame, 1989, 75(2): 111-121. doi: 10.1016/0010-2180(89)90090-4
    [12] Tunik Y V. Influence of turbulence on the formation of detonation combustion of a gas in tubes[J]. J Eng Phys Thermophys, 2007, 80(5): 927-938. doi: 10.1007/s10891-007-0124-7
    [13] Oh K H, Kim H, Kim J B, et al. A study on the obstacle-induced variation of the gas explosion characteristics[J]. J Loss Prev Process Ind, 2001, 14(6): 597-602. doi: 10.1016/S0950-4230(01)00054-7
    [14] Zhai C, Lin B Q, Ye Q, et al. Influence of geometry shape on gas explosion propagation laws in bend roadways[J]. Procedia Earth Planet Sci, 2009, 1(1): 193-198. doi: 10.1016/j.proeps.2009.09.032
    [15] 庞磊.瓦斯爆炸冲击波与高速流动的非线性特征及规律[D].北京: 北京理工大学, 2011.

    Pang L. Nonlinear characters and laws of gas explosion shock wave and high-speed flow in coal mines[D]. Beijing: Beijing Institute of Technology, 2011. (in Chinese)
    [16] 赵衡阳.气体和粉尘爆炸原理[M].北京: 北京理工大学出版社, 1996.

    Zhao H Y. Gas and Dust Explosion Theory[M]. Beijing: Beijing Institute of Technology Press, 1996. (in Chinese)
    [17] Janovsky B, Selesovsky P, Horkel J, et al. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation[J]. J Loss Prev Process Ind, 2006, 19(2/3): 280-287.
    [18] Maremonti M, Russo G, Salzano E, et al. Numerical simulation of gas explosions in linked vessels[J]. J Loss Prev Process Ind, 1999, 12(3): 189-194. doi: 10.1016/S0950-4230(98)00061-8
    [19] Tufano V, Maremonti M, Salzano E, et al. Simulation of VCEs by CFD modelling: An analysis of sensitivity[J]. J Loss Prev Process Ind, 1998, 11(3): 169-175. doi: 10.1016/S0950-4230(97)00038-7
    [20] Salzano E, Marra F S, Russo G, et al. Numerical simulation of turbulent gas flames in tubes[J]. J Hazard Mater, 2002, 95(3): 233-247. doi: 10.1016/S0304-3894(02)00161-9
    [21] Bray K N C. Studies of the turbulent burning velocity[J]. Proc R Soc Lond A, 1990, 431(1882): 315-335. doi: 10.1098/rspa.1990.0133
    [22] Zhang Q, Pang L, Liang H M. Effect of scale on the explosion of methane in air and its shockwave[J]. J Loss Prev Process Ind, 2011, 24(1): 43-48. doi: 10.1016/j.jlp.2010.08.011
    [23] Zhang Q, Pang L, Zhang S X. Effect of scale on flame speeds of methane-air[J]. J Loss Prev Process Ind, 2011, 24(5): 705-712. doi: 10.1016/j.jlp.2011.06.021
  • 加载中
图(9)
计量
  • 文章访问数:  7521
  • HTML全文浏览量:  2167
  • PDF下载量:  439
出版历程
  • 收稿日期:  2012-07-28
  • 修回日期:  2012-10-05

目录

    /

    返回文章
    返回