基于温度与应变率相互耦合的泡沫铝本构关系

王鹏飞 徐松林 胡时胜

王鹏飞, 徐松林, 胡时胜. 基于温度与应变率相互耦合的泡沫铝本构关系[J]. 高压物理学报, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004
引用本文: 王鹏飞, 徐松林, 胡时胜. 基于温度与应变率相互耦合的泡沫铝本构关系[J]. 高压物理学报, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004
WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004
Citation: WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004

基于温度与应变率相互耦合的泡沫铝本构关系

doi: 10.11858/gywlxb.2014.01.004
基金项目: 国家自然科学基金(90916026)
详细信息
    作者简介:

    王鹏飞(1985-), 男, 博士, 主要从事材料的动态力学行为研究.E-mail:pfw@mail.ustc.edu.cn

    通讯作者:

    胡时胜(1945-), 男, 教授, 主要从事材料的动态力学行为研究.E-mail: sshu@ustc.edu.cn

  • 中图分类号: O347.3

A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate

  • 摘要: 根据分离式Hopkinson压杆实验以及准静态实验得到的泡沫铝材料在不同温度以及不同应变率下的应力-应变曲线,分析了泡沫铝本构方程中温度效应与应变率效应之间的耦合关系,即温度越高,泡沫铝的应变率效应越显著。基于Sherwood和Frost提出的泡沫材料本构关系框架,对常温下的应变率敏感系数进行了温度项修正,修正后的本构方程在高温高应变率下与实验结果具有较好的一致性。最终得到泡沫铝在一定密度范围内包含温度项、应变率项较为完备的本构方程。

     

  • 图  常温下泡沫铝的应力-应变拟合结果与实验结果的比较

    Figure  1.  Comparison between calculated and experimental stress-strain curves for aluminum foam at room temperature

    图  高应变率下泡沫铝的应力-应变拟合结果与实验结果的比较

    Figure  2.  Comparison between calculated and experimental stress-strain curves for aluminum foam at high strain rate

    图  高温下未修正模型得到的泡沫铝应力-应变拟合曲线与实验曲线的比较

    Figure  3.  Comparison between calculated and experimental stress-strain curves for aluminum foam using the unmodified model at high temperature

    图  高温下由修正后的本构方程得到的泡沫铝应力-应变拟合曲线与实验曲线的比较

    Figure  4.  Comparison between calculated and experimental stress-strain curves for aluminum foam using the modified constitutive equation at high temperature

    图  泡沫铝的坍塌应力随温度的变化

    Figure  5.  Variation of collapse stress with temperature for aluminum foam

    图  应变率敏感系数随温度的变化

    Figure  6.  Variation of strain rate sensitivity coefficient with temperature

    图  不同密度的泡沫铝应力-应变实验曲线与拟合曲线

    Figure  7.  Comparison between calculated and experimental stress-strain curves for aluminum foam with different density

    表  1  形状函数的拟合参数值

    Table  1.   Fitting parameters of shape function

    A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
    261 -6 490 7.3×104 -4.55×105 1.73×106 -4.2×106 6.54×106 -6.31×106 3.45×106 -8.16×105
    下载: 导出CSV

    表  2  本构方程参数

    Table  2.   Parameters of constitutive equation

    m A B C0 k
    1.084 2.546 0.269 5.13×10-3 3.948
    下载: 导出CSV
  • [1] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. Cambridge, UK: Cambridge University Press, 1997: 175-231.
    [2] Evan A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems[J]. Prog Mater Sci, 1998, 43(3): 171-221. doi: 10.1016/S0079-6425(98)00004-8
    [3] Wadley H N. Multifunctional periodic cellular metals[J]. Philos Trans A Math Phys Eng Sci, 2006, 364: 31-68. http://europepmc.org/abstract/MED/18272452
    [4] Bigg D M. Predicting the shock mitigating properties of thermoplastic foams[J]. Polym Eng Sci, 1981, 21(9): 548-556. doi: 10.1002/pen.760210907
    [5] Miltz J, Ramon O, Mizrahi S. Mechanical behavior of closed cell plastic foams used as cushioning materials[J]. J Appl Polym Sci, 1989, 38(2): 281-290. doi: 10.1002/app.1989.070380209
    [6] Ramon O, Mizrahi S, Miltz J. Mechanical properties and behavior of open cell foams used as cushioning materials[J]. Polym Eng Sci, 1990, 30(4): 197-201. doi: 10.1002/pen.760300402
    [7] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands, 1983: 541-547.
    [8] Rusch K C. Load-compression behavior of flexible foams[J]. J Appl Polym Sci, 1969, 13(11): 2297-2311. doi: 10.1002/app.1969.070131106
    [9] Schwaber D M, Meinecke E A. Energy absorption in polymeric foams. Ⅱ. Prediction of impact behavior from instron data for foams with rate-dependent modulus[J]. J Appl Polym Sci, 1971, 15(10): 2381-2393. doi: 10.1002/app.1971.070151006
    [10] Nagy A, Ko W L, Lindholm U S. Mechanical behavior of foamed materials under dynamic compression[J]. J Cell Plast, 1974, 10(3): 127-134. http://www.researchgate.net/publication/235096778_Mechanical_Behavior_of_Foamed_Materials_Under_Dynamic_Compression
    [11] Sherwood J A, Frost C C. Constitutive modeling and simulation of energy absorbing polyurethane foam under impact loading[J]. Polym Eng Sci, 1992, 32(16): 1138-1146. doi: 10.1002/pen.760321611/citedby
    [12] 胡时胜, 刘剑飞, 王梧.硬质聚氨酯泡沫塑料本构关系的研究[J].力学学报, 1998, 30(2): 151-156. http://www.cqvip.com/QK/91029X/19982/2952337.html

    Hu S S, Liu J F, Wang W. Study of the constitutive relationship of rigid polyurethane foam[J]. Acta Mechanica Sinica, 1998, 30(2): 151-156. (in Chinese) http://www.cqvip.com/QK/91029X/19982/2952337.html
    [13] Liu Q L, Subhash G, Gao X L. A parametric study on crushability of open-cell structural polymeric foams[J]. J Porous Mater, 2005, 12(3): 233-248. doi: 10.1007/s10934-005-1652-1
    [14] Chou C C, Zhao Y, Lim G G, et al. A constitutive model for polyurethane foams with strain-rate and temperature effects[C]//International Congress & Exposition Technical Papers. Michigan, USA, 1998: 743-754.
    [15] Wang Z H, Jing L, Zhao L M. Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J]. Trans Nonferrous Met Soc China, 2011, 21(3): 449-454. doi: 10.1016/S1003-6326(11)60735-8
    [16] 王鹏飞, 徐松林, 胡时胜.不同温度下泡沫铝压缩行为与变形机制探讨[J].振动与冲击, 2013, 32(5): 16-19. http://www.cqvip.com/QK/95775X/201305/45244844.html

    Wang P F, Xu S L, Hu S S. Compressive behavior and deformation mechanism of aluminum foam under different temperature[J]. Journal of Vibration and Shock, 2013, 32(5): 16-19. (in Chinese) http://www.cqvip.com/QK/95775X/201305/45244844.html
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  8987
  • HTML全文浏览量:  4748
  • PDF下载量:  345
出版历程
  • 收稿日期:  2012-10-25
  • 修回日期:  2013-01-14

目录

    /

    返回文章
    返回