高温高压下岩石热扩散系数的测量:以玄武岩为例

苗社强 李和平 陈刚

苗社强, 李和平, 陈刚. 高温高压下岩石热扩散系数的测量:以玄武岩为例[J]. 高压物理学报, 2014, 28(1): 11-17. doi: 10.11858/gywlxb.2014.01.002
引用本文: 苗社强, 李和平, 陈刚. 高温高压下岩石热扩散系数的测量:以玄武岩为例[J]. 高压物理学报, 2014, 28(1): 11-17. doi: 10.11858/gywlxb.2014.01.002
MIAO She-Qiang, LI He-Ping, CHEN Gang. Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure:Application to Basalt[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 11-17. doi: 10.11858/gywlxb.2014.01.002
Citation: MIAO She-Qiang, LI He-Ping, CHEN Gang. Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure:Application to Basalt[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 11-17. doi: 10.11858/gywlxb.2014.01.002

高温高压下岩石热扩散系数的测量:以玄武岩为例

doi: 10.11858/gywlxb.2014.01.002
基金项目: 中国科学院“135”项目
详细信息
    作者简介:

    苗社强(1984-), 男, 博士研究生, 主要从事高温高压实验岩石学研究.E-mail:miaosq@yeah.net

    通讯作者:

    李和平(1963-), 男, 研究员, 主要从事高温高压实验岩石学研究.E-mail: lihp0803@163.com

  • 中图分类号: O521.2;O521.3;P589.1

Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure:Application to Basalt

  • 摘要: 高温高压下矿物和岩石的热传导性质是了解地球内部动力学机制、层圈温度分布和地球热演化历史的重要参数。高温高压下原位测量矿物和岩石的热扩散系数具有重要的地学意义,但是在国内这方面的研究还处于空白阶段。以YJ-3000t紧装式六面顶压机为平台,搭建了高温高压下原位测量岩石热扩散系数的装置,并分别在0.5和2.0 GPa、20~500 ℃条件下测量了玄武岩的热扩散系数。外推至常压高温下的结果与常压高温下采用LFA427激光热导仪测量的结果符合得较好,说明该装置可以用于测量高温高压下岩石的热扩散系数。

     

  • 图  正交光下碱性橄榄玄武岩的照片

    Figure  1.  Micrograph of alkalic olivine basalt in cross-polarized light

    图  平面热源法原理图[24]

    Figure  2.  Principle of the plane source method[24]

    图  高温高压下测量热扩散系数样品组装图

    Figure  3.  Sample assembly for thermal diffusivity measurement at high pressure and high temperature

    图  高温高压下热扩散系数测量系统示意图

    Figure  4.  Schematic diagram of measurement system of thermal diffusivity at high temperature and high pressure

    图  玄武岩热扩散系数与温度的关系

    Figure  5.  The relationship between thermal diffusivity and temperature for basalt

    表  1  碱性橄榄玄武岩的主量元素组成(质量分数)

    Table  1.   Major element composition of the alkalic olivine basalt (Mass fraction) (%)

    SiO2 TiO2 Al2O3 FeO* MnO CaO Na2O K2O P2O5 MgO LOI
    44.88 2.47 13.78 13.57 0.17 8.93 3.70 0.97 0.76 8.99 1.78
    下载: 导出CSV

    表  2  玄武岩热扩散系数的实验结果和外推结果

    Table  2.   The experiment and extrapolation results of thermal diffusivity of basalt

    T/(℃) Dexp/(mm2·s-1) D0/(mm2·s-1) DL/(mm2·s-1) ap/(GPa-1) δ/(%)
    0.5 GPa 2.0 GPa
    20 0.909 1.158 0.826 0.799 0.201 3.4
    50 0.870
    100 0.833 1.053 0.760 0.737 0.193 3.2
    150 0.816
    200 0.777 0.922 0.728 0.683 0.133 6.6
    250 0.765
    300 0.738 0.905 0.682 0.655 0.163 4.2
    350 0.699
    400 0.694 0.826 0.650 0.631 0.135 3.1
    450 0.686
    500 0.670 0.735 0.648 0.613 0.067 5.7
    下载: 导出CSV
  • [1] Birch F, Clark H. The thermal conductivity of rocks and its dependence upon temperature and composition[J]. Am J Sci, 1940, 238(8): 529-558. doi: 10.2475/ajs.238.8.529
    [2] Hughes D S, Sawin F. Thermal conductivity of dielectric solids at high pressure[J]. Phys Rev, 1967, 161(3): 861-863. doi: 10.1103/PhysRev.161.861
    [3] Fujisawa H, Fujii N, Mizutani H, et al. Thermal diffusivity of Mg2SiO4, Fe2SiO4 and NaCl at high pressures and temperatures[J]. J Geophys Res, 1968, 73(14): 4727-4733. doi: 10.1029/JB073i014p04727
    [4] Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3D convection[J]. Earth Planet Sci Lett, 1999, 171(3): 401-409. doi: 10.1016/S0012-821X(99)00165-X
    [5] Yanagawa T K B, Nakada M, Yuen D A. Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity[J]. Earth Planets Space, 2005, 57(1): 15-28.
    [6] Chapman D S. Thermal gradients in the continental crust[J]. Geol Soc Spec Publ, 1986, 24(1): 63-70. doi: 10.1144/GSL.SP.1986.024.01.07
    [7] Artemieva I M, Mooney W D. Thermal thickness and evolution of Precambrian lithosphere: A global study[J]. J Geophys Res, 2001, 106(B8): 16387-16414. doi: 10.1029/2000JB900439
    [8] Marton F C, Shankland T J, Rubie D C, et al. Effects of variable thermal conductivity on the mineralogy of subducting slabs and implications for mechanisms of deep earthquakes[J]. Phys Earth Planet Inter, 2005, 149(1/2): 53-64.
    [9] van den Berg A P, Yuen D A. Delayed cooling of the Earth's mantle due to variable thermal conductivity and the formation of a low conductivity zone[J]. Earth Planet Sci Lett, 2002, 199(3/4): 403-413.
    [10] Stacey F D, Loper D E. A revised estimate of the conductivity of iron alloy at high pressure and implications for the core energy balance[J]. Phys Earth Planet Inter, 2007, 161(1/2): 13-18.
    [11] Beck A E, Darbha D M, Schloessin H H. Lattice conductivities of single-crystal and polycrystalline materials at mantle pressures and temperatures[J]. Phys Earth Planet Inter, 1978, 17(1): 35-53.
    [12] Yukutake H, Shimada M. Thermal conductivity of NaCl, MgO, coesite and stishovite up to 40 kbar[J]. Phys Earth Planet Inter, 1978, 17(3): 193-200. doi: 10.1016/0031-9201(78)90036-5
    [13] Beck P, Goncharov A F, Struzhkin V V, et al. Measurement of thermal diffusivity at high pressure using a transient heating technique[J]. Appl Phys Lett, 2007, 91(18): 181914. doi: 10.1063/1.2799243
    [14] Macpherson W R, Schloessin H H. Lattice and radiative thermal conductivity variations through high p, T polymorphic structure transitions and melting points[J]. Phys Earth Planet Inter, 1982, 29(1): 58-68.
    [15] Katsura T. Thermal diffusivity of olivine under upper mantle conditions[J]. Geophys J Int, 1995, 122(1): 63-69.
    [16] Katsura T. Thermal diffusivity of periclase at high temperatures and high pressures[J]. Phys Earth Planet Inter, 1997, 101(1/2): 73-77. http://www.sciencedirect.com/science/article/pii/S0031920196032232
    [17] Xu Y S, Shankland T J, Linhardt S, et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1 373 K[J]. Phys Earth Planet Inter, 2004, 143: 321-336. http://www.sciencedirect.com/science/article/pii/S0031920104001347
    [18] Osako M, Ito E, Yoneda A. Simultaneous measurements of thermal conductivity and thermal diffusivity for garnet and olivine under high pressure[J]. Phys Earth Planet Inter, 2004, 143: 311-320. http://onlinelibrary.wiley.com/resolve/reference/ADS?id=2004PEPI..143..311O
    [19] Gibert B, Seipold U, Tommasi A, et al. Thermal diffusivity of upper mantle rocks: Influence of temperature, pressure, and the deformation fabric[J]. J Geophys Res, 2003, 108(B8): 2359-2373.
    [20] Dobson D P, Hunt S A, Li L, et al. Measurement of thermal diffusivity at high pressures and temperatures using synchrotron radiography[J]. Mineral Mag, 2008, 72(2): 653-658. http://www.degruyter.com/view/j/minmag.2008.72.issue-2/minmag.2008.072.2.653/minmag.2008.072.2.653.xml?format=INT
    [21] Ohta K, Yagi T, Taketoshi N, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary[J]. Earth Planet Sci Lett, 2012, 349: 109-115. http://www.sciencedirect.com/science/article/pii/S0012821X12003354
    [22] Manthilake G M, de Koker N, Frost D J, et al. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core[J]. Proc Natl Acad Sci, 2011, 108(44): 17901-17904. doi: 10.1073/pnas.1110594108
    [23] Dzhavadov L N. Measurement of thermophysical properties of dielectrics under pressure[J]. High Temp High Press, 1975, 7: 49-54. http://www.researchgate.net/publication/279655138_Measurement_of_thermophysical_properties_of_dielectrics_under_pressure
    [24] Kubicr L, Vretenr V, Hammerschmidt U. Thermophysical parameters of optical glass BK 7 measured by the pulse transient method[J]. Int J Thermophys, 2005, 26(2): 507-518. doi: 10.1007/s10765-005-4512-y
    [25] Kanamori H, Mizutani H, Fujii N. Method of thermal diffusivity measurement[J]. J Phys Earth, 1969, 17(1): 43-53. doi: 10.4294/jpe1952.17.43
    [26] Hofmeister A M. Thermal diffusivity of garnets at high temperature[J]. Phys Chem Miner, 2006, 33(1): 45-62. doi: 10.1007/s00269-005-0056-8
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  7244
  • HTML全文浏览量:  2313
  • PDF下载量:  314
出版历程
  • 收稿日期:  2012-11-22
  • 修回日期:  2013-02-19

目录

    /

    返回文章
    返回