常温高压下水的液-液相变

王慧媛 郑海飞

王慧媛, 郑海飞. 常温高压下水的液-液相变[J]. 高压物理学报, 2013, 27(4): 490-494. doi: 10.11858/gywlxb.2013.04.003
引用本文: 王慧媛, 郑海飞. 常温高压下水的液-液相变[J]. 高压物理学报, 2013, 27(4): 490-494. doi: 10.11858/gywlxb.2013.04.003
WANG Hui-Yuan, ZHENG Hai-Fei. Liquid-Liquid Phase Transition of Water at High Pressure and Ambient Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 490-494. doi: 10.11858/gywlxb.2013.04.003
Citation: WANG Hui-Yuan, ZHENG Hai-Fei. Liquid-Liquid Phase Transition of Water at High Pressure and Ambient Temperature[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 490-494. doi: 10.11858/gywlxb.2013.04.003

常温高压下水的液-液相变

doi: 10.11858/gywlxb.2013.04.003
详细信息
    通讯作者:

    郑海飞 E-mail:hfzheng@pku.edu.cn

Liquid-Liquid Phase Transition of Water at High Pressure and Ambient Temperature

  • 摘要: 在300 K、0.1~1 400 MPa条件下,利用碳化硅压腔,进行了液态水的拉曼光谱测量和研究。实验结果表明:随着压力的增大,水的对称伸缩振动峰(1)整体向低频方向移动,但在约200和620 MPa处存在不连续,可明显分为3个区间(Ⅰ、Ⅱ、Ⅲ);水从状态Ⅰ到状态Ⅱ再到状态Ⅲ,其拉曼位移对压力p的变化率(|d1/dp|)减小,表明水变得越来越难以压缩;随着压力的改变,相邻的五水分子聚合体之间的连接方式发生了变化。这些性质表明,液态水在约200和620 MPa处可能存在着液-液相转变。

     

  • Xu Y S, Zheng H F, Xie H S, et al. Experimental study of ice-water equilibrium at 1. 5~5. 0 GPa [J]. Acta Mineralogica Sinica, 1996, 16(4): 431-435. (in Chinese)
    徐有生, 郑海飞, 谢鸿森, 等. 1. 5~5. 0 GPa压力下冰-水平衡实验研究 [J]. 矿物学报, 1996, 16(4): 431-435.
    Mishima O, Suzuki Y. Propagation of the polyamorphic transition of ice and the liquid-liquid critical point [J]. Nature, 2002, 419(10): 599-603.
    Auer B M, Skinner J L. IR and Raman spectra of liquid water: Theory and interpretation [J]. J Chem Phys, 2008, 128(22): 224511.
    Soper A K, Ricci M A. Structures of high-density and low-density water [J]. Phys Rev Lett, 2000, 84(13): 2881-2884.
    Saitta A M, Datchi F. Structure and phase diagram of high-density water: The role of interstitial molecules [J]. Phys Rev E, 2003, 67: 020201.
    Khoshtariya D E, Zahl A, Dolidze T D, et al. Local dense structural heterogeneities in liquid water from ambient to 300 MPa pressure: Evidence for multiple liquid-liquid transitions [J]. Chem Phys Chem, 2004, 5(9): 1398-1404.
    Zheng H F, Xie H S, Xu Y S, et al. Electrical conductivity of H2O under 0. 21-4. 18 GPa and 20-350 ℃ [J]. Chinese Science Bulletin, 1997, 42(9): 897-903. (in Chinese)
    郑海飞, 谢鸿森, 徐有生, 等. 0. 21~4. 18 GPa和20~350 ℃下H2O的电导率研究 [J]. 科学通报, 1997, 42(9): 897-903.
    Zheng H F, Xie H S, Xu Y S, et al. Electrical conductivity of NaCl of 0. 001 mol under high pressure [J]. Chinese Science Bulletin, 1997, 42(14): 1545-1547. (in Chinese)
    郑海飞, 谢鸿森, 徐有生, 等. 0. 001 mol NaCl溶液的高压电导率测定 [J]. 科学通报, 1997, 42(14): 1545-1547.
    Liebscher A. Aqueous fluids at elevated pressure and temperature [J]. Geofluids, 2010, 10(1/2): 3-19.
    Zheng H F, Sun Q, Shen A, et al. Evidence of discontinuous property of water: Study of infrared spectra at high temperature and high pressure [J]. Spectroscopy and Spectral Analysis, 2004, 24(4): 411-413. (in Chinese)
    郑海飞, 孙樯, Shen A, 等. 水性质的不连续证据: 高温高压下水的红外光谱研究 [J]. 光谱学与光谱分析, 2004, 24(4): 411-413.
    Kawamoto T, Ochiai S, Kagi H. Changes in the structure of water deduced from the pressure dependence of the Raman OH frequency [J]. J Chem Phys, 2004, 120(13): 5867-5870.
    Yang Y P, Zheng H F, Sun Q. Evidence of discontinuities in the Raman spectra of aqueous NaCl solution at high pressure [J]. Spectroscopy and Spectral Analysis, 2009, 29(6): 1573-1576. (in Chinese)
    杨玉萍, 郑海飞, 孙樯. 高压下NaCl水溶液的Raman光谱不连续性的证据 [J]. 光谱学与光谱分析, 2009, 29(6): 1573-1576.
    Sun Q, Zheng H F, Xu J A, et al. Raman spectroscopic studies of the stretching band from water up to 6 kbar at 290 K [J]. Chem Phys Lett, 2003, 379(5/6): 427-431.
    Chen J Y, Zhang H, Xiao W S, et al. Review of diamond anvil cell for in-situ high-temperature and high-pressure spectroscopic study [J]. Chinese Journal of Spectroscopy Laboratory, 2004, 21(2): 209-216. (in Chinese)
    陈晋阳, 张红, 肖万生, 等. 金刚石压腔高温高压原位谱学研究的评述 [J]. 光谱实验室, 2004, 21(2): 209-216.
    Mao H K, Mao W L. Theory and practice-Diamond-anvil cells and probes for high P-T mineral physics studies [M]//Price G D. Treatise on Geophysics: Mineral Physics. USA: Elsevier, 2007: 231-267.
    Bassett W A, Shen A H, Bucknum M, et al. Hydrothermal studies in a new diamond anvil cell up to 10 GPa and from -190 ℃ to 1200 ℃ [J]. Pure Appl Geophys, 1993, 141(2/3/4): 487-495.
    Wang H Y, Zheng H F. High pressure-temperature experiment and in-situ measurement technology [J]. Earth Science Frontiers, 2009, 16(1): 17-26. (in Chinese)
    王慧媛, 郑海飞. 高温高压实验及原位测量技术 [J]. 地学前缘, 2009, 16(1): 17-26.
    Schmidt C, Ziemann M A. In-situ Raman spectroscopy of quartz: A pressure sensor for hydrothermal diamond-anvil cell experiments at elevated temperatures [J]. Am Miner, 2000, 85(11/12): 1725-1734.
    Zheng H F, Sun Q, Zhao J, et al. Comment on the pressure gauge for the experiments at high temperature and high pressure with DAC [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 78-82. (in Chinese)
    郑海飞, 孙樯, 赵金, 等. 金刚石压腔高温高压实验的压力标定方法及其现状 [J]. 高压物理学报, 2004, 18(1): 78-82.
    Lue L, Blankschtein D. Application of integral equation theories to predict the structure, thermodynamics, and phase behavior of water [J]. J Chem Phys, 1995, 102(13): 5427-5437.
    Kusalik P G, Svishchev I M. The spatial structure in liquid water [J]. Science, 1994, 265(5176): 1219-1221.
    Starzak M, Mathlouthi M. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data [J]. Food Chem, 2003, 82(1): 3-22.
    Canpolat M, Starr F W, Scala A, et al. Local structural heterogeneities in liquid water under pressure [J]. Chem Phys Lett, 1998, 294(1/2/3): 9-12.
  • 加载中
计量
  • 文章访问数:  6245
  • HTML全文浏览量:  277
  • PDF下载量:  447
出版历程
  • 收稿日期:  2012-02-05
  • 修回日期:  2012-03-05
  • 发布日期:  2013-08-15

目录

    /

    返回文章
    返回