DAC加载金刚石和样品变形实验与模拟研究

敬秋民 吴强 毕延 于继东 徐济安

敬秋民, 吴强, 毕延, 于继东, 徐济安. DAC加载金刚石和样品变形实验与模拟研究[J]. 高压物理学报, 2013, 27(3): 411-416. doi: 10.11858/gywlxb.2013.03.015
引用本文: 敬秋民, 吴强, 毕延, 于继东, 徐济安. DAC加载金刚石和样品变形实验与模拟研究[J]. 高压物理学报, 2013, 27(3): 411-416. doi: 10.11858/gywlxb.2013.03.015
JING Qiu-Min, WU Qiang, BI Yan, YU Ji-Dong, XU Ji-An. Experimental Study and Numerical Simulation on Deformation of Diamond and Sample under DAC Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 411-416. doi: 10.11858/gywlxb.2013.03.015
Citation: JING Qiu-Min, WU Qiang, BI Yan, YU Ji-Dong, XU Ji-An. Experimental Study and Numerical Simulation on Deformation of Diamond and Sample under DAC Loading[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 411-416. doi: 10.11858/gywlxb.2013.03.015

DAC加载金刚石和样品变形实验与模拟研究

doi: 10.11858/gywlxb.2013.03.015
详细信息
    通讯作者:

    敬秋民 E-mail:j_qm@163.com

Experimental Study and Numerical Simulation on Deformation of Diamond and Sample under DAC Loading

  • 摘要: 针对压力梯度法屈服强度测量实验技术,通过金刚石压砧对Mo薄箔样品的压缩实验,结合有限元模拟对金刚石的弹性变形和样品的弹塑性变形历史的计算,分析了金刚石的弹性压缩变形和杯形变形(Cupping)对压力梯度法原位厚度测量以及样品表面压力分布的影响。结果表明,至少在实验最高压力31.0 GPa以内,忽略金刚石的弹性压缩变形具有合理性,金刚石杯形变形较为明显,对有限元模拟和实验测量给出的压力分布曲线分析表明,该变形使台面边沿样品表面的压力分布略微偏低,但在31.0 GPa以内,对压力分布以及压力梯度没有影响。在压力达到60 GPa时,台面杯形变形已经导致压砧边沿接触,实验设计上给出了降低杯形变形的建议。

     

  • Sung C M, Goetze C, Mao H K. Pressure distribution in a diamond anvil cell and shear stress for fayalite [J]. Rev Sci Instrum, 1977, 48(11): 1386-1391.
    Meade C, Jeanloz R. Yield Strength of MgO to 40 GPa [J]. J Geophys Res, 1988, 93(B4): 3261-3269.
    Jeanloz R, Godwal B K, Meade C. Static strength and equation of state of rhenium at ultra-high pressures [J]. Nature, 1991, 349(6311): 687-689.
    Weir S T, Akella J, Ruddle C, et al. Static strengths of Ta and U under ultrahigh pressures [J]. Phys Rev B, 1998, 58(17): 11258-11265.
    Meade C, Jeanloz R. Yield strength of B1 and B2 phase of NaCl [J]. J Geophys Res, 1988, 93(B4): 3270-3274.
    Meade C, Jeanloz R. Yield strength of Al2O3 at high pressures [J]. Phys Rev B, 1990, 42(4): 2532-2535.
    Meade C, Jeanloz R. The strength of mantle silicates at high pressures and room temperature: Implications for the viscosity of the mantle [J]. Nature, 1990, 348(6301): 533-535.
    Jing Q M, Bi Y, Wu Q, et al. The yield strength of molybdenum at high pressures [J]. Rev Sci Instrum, 2007, 78(7): 073906-1-5.
    Jing Q M. Experimental study on the yield strength of typical metal at high hydrostatic pressures [D]. Mianyang: China Academy of Engineering Physics, 2007: 23-25. (in Chinese)
    敬秋民. 典型金属材料屈服强度的静高压实验研究 [D]. 绵阳: 中国工程物理研究院, 2007: 23-25.
    Hemley R J, Mao H K, Shen G, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science, 1997, 276(5316): 1242-1244.
    Merkel S, Hemley R J, Mao H K, et al. Finite-element modeling of a diamond deformation at multimegabar pressures [J]. Appl Phys Lett, 1999, 74(5): 656-658.
    Crowhurst J C, Darnell I M, Goncharov A F, et al. Determination of the coefficient of friction between metal and diamond under high hydrostatic pressure [J]. Appl Phys Lett, 2004, 85(22): 5188 -5190.
    Moss W C, Halquist J O, Reichlin R, et al. Finite element analysis of the diamond anvil cell: Achieving 4. 6 Mbar [J]. Appl Phys Lett, 1986, 48(19): 1258-1260.
    Moss W C, Goettel K A. The stability of a sample in a diamond anvil cell [J]. J Appl Phys, 1987, 61(11): 4951-4954.
    Moss W C, Goettel K A. Finite element design of diamond anvils [J]. Appl Phys Lett, 1987, 50(1): 25-27.
    Xu J A, Mao H K, Bell P M. The pressure calibration up to Mbars and the achievement of 5. 5 Mbars under hydro-static and nonhydrostatic condition [J]. Acta Phys Sin, 1987, 36(4): 500-512. (in Chinese)
    徐济安, 毛河光, Bell P M. 百万大气压下的压强校准及5. 5 Mbar静压强的获得 [J]. 物理学报, 1987, 36(4): 500-512.
    Kondrat'yev A I, Vohra Y K. Finite-element modeling of stresses and strains in a diamond anvil cell device: case of a diamond coated rhenium gasket [J]. High Pressure Res, 2007, 27(3): 321-331.
    Kieder B, Duffy T S. Finite element simulations of the laser-heated diamond-anvil cell [J]. J Appl Phys, 2005, 97: 114902(1)-114902(9).
    Dewaele A, Torrent M, Loubeyre P, et al. Compression curves of transition metals in the Mbar range: Experiments and projector augmented-wave calculations [J]. Phys Rev B, 2008, 78(10): 104102.
    Duffy T S, Shen G, Shu J, et al. Elasticity, shear strength, and equation of state of molybdenum and gold from X-ray diffraction under non-hydrostatic compression to 24 GPa [J]. J Appl Phys, 1999, 86(12): 6729-6736.
    Novikov N V, Polotnyak S B, Shvedov L K, et al. Regularities of phase transformations and plastic straining of materials in compression and shear on diamond: Experiments and theory [J]. J Superhard Mater, 1999, 21(4): 36-48.
  • 加载中
计量
  • 文章访问数:  6639
  • HTML全文浏览量:  263
  • PDF下载量:  400
出版历程
  • 收稿日期:  2011-12-17
  • 修回日期:  2012-06-07
  • 发布日期:  2013-06-15

目录

    /

    返回文章
    返回