丝网防护屏碎片云特性数值模拟研究

庞宝君 林敏 张凯 傅翔

庞宝君, 林敏, 张凯, 傅翔. 丝网防护屏碎片云特性数值模拟研究[J]. 高压物理学报, 2013, 27(3): 391-397. doi: 10.11858/gywlxb.2013.03.012
引用本文: 庞宝君, 林敏, 张凯, 傅翔. 丝网防护屏碎片云特性数值模拟研究[J]. 高压物理学报, 2013, 27(3): 391-397. doi: 10.11858/gywlxb.2013.03.012
PANG Bao-Jun, LIN Min, ZHANG Kai, FU Xiang. Numerical Simulation of Debris Cloud Characteristics of the Mesh Shields[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 391-397. doi: 10.11858/gywlxb.2013.03.012
Citation: PANG Bao-Jun, LIN Min, ZHANG Kai, FU Xiang. Numerical Simulation of Debris Cloud Characteristics of the Mesh Shields[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 391-397. doi: 10.11858/gywlxb.2013.03.012

丝网防护屏碎片云特性数值模拟研究

doi: 10.11858/gywlxb.2013.03.012
详细信息
    通讯作者:

    林敏 E-mail:linmin813@yahoo.cn

Numerical Simulation of Debris Cloud Characteristics of the Mesh Shields

  • 摘要: 丝网作为一种颇具潜力的轻质防护屏候选材料,在新型防护结构开发中具有广泛的应用前景。为了掌握丝网防护屏超高速撞击特性,采用数值仿真方法模拟球形弹丸分别撞击连续型防护屏和丝网防护屏,研究相同厚度及面密度的2种防护屏受到弹丸撞击后产生的碎片云形态、质量、速度和动量分布的差异。结果表明,丝网防护屏碎片云随撞击位置不同呈现不同形态,但碎片云前端均存在带状碎片分布区域。在丝网防护屏产生的碎片云中,碎片主要分布于碎片云后端,丝网不能有效地减缓入射弹丸速度,其作用主要为切割弹丸。弹丸撞击2种防护屏后,弹丸破碎形成的碎片云中相同部位呈现不同速度变化规律。丝网防护屏碎片云动量密度峰值均高于相同厚度连续型防护屏碎片云,而相同面密度的2种防护屏碎片云动量密度峰值接近。

     

  • Zhang W, Pang B J, Zou J X. Meteoroid and space shielding concepts for spacecraft [J]. Journal of Harbin Institute of Technology, 1999, 32(2): 18-22. (in Chinese)
    张伟, 庞宝君, 邹经湘. 航天器微流星体及空间碎片防护方案 [J]. 哈尔滨工业大学学报, 1999, 32(2): 18-22.
    Christiansen E L. Advanced meteoroid and debris shielding concepts, AIAA 90-1336 [R]. Houston, Texas: NASA/Johnson Space center, 1990.
    Christiansen E L, Kerr J H. Mesh double-bumper shield: A low-weight alternative for spacecraft meteoroid and orbital debris protection [J]. Int J Impact Eng, 1993, 14(1-4): 169-180.
    Horz F, Cintala M. Comparison of continuous and discontinuous bumpers: Dimensionally scaled impact experiments into single wire meshes, NASA-TM 104749 [R]. Washington, D C, USA: National Aeronautics and Space Administration, 1992.
    Horz F, Cintala M. Impact experiments multiple-mesh target: Concept development of a lightweight collisional bumper, NASA-TM 104749 [R]. Washington, D C, USA: National Aeronautics and Space Administration, 1993.
    Horz F, Cintala M, Bernhard R P. Multiple mesh bumpers: A feasibility study [J]. Int J Impact Eng, 1995, 17(1-3): 431-442.
    Myagkov N N, Goloveshkin V A, Shumikhin T A. On hypervelocity penetration of the mesh-bumper strings into a projectile [J]. Int J Impact Eng, 2009, 36(3): 468-475.
    Myagkov N N, Shumikhin T A. Experimental and numerical study of peculiarities at high-velocity interaction between a projectile and discrete bumpers [J]. Int J Impact Eng, 2010, 37(9): 980-994.
    Pang B J, Lin M, Niu R T. Simulation and validation of mesh shields under hypervelocity impact [J]. Journal of Harbin Institute of Technology, 2011, 43(Suppl 1): 24-28. (in Chinese)
    庞宝君, 林敏, 牛瑞涛. 超高速撞击网状防护结构仿真模型的建立与验证 [J]. 哈尔滨工业大学学报, 2011, 43(增刊 1): 24-28.
    Walsh J M, Rice M H, Mcqueen R G. Shock-wave compression of twenty-seven metal [J]. Phys Rev, 1957, 108(2): 196-216.
    Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high strain rate [J]. J Appl Phys, 1980, 51(3): 1498-1504.
  • 加载中
计量
  • 文章访问数:  6165
  • HTML全文浏览量:  276
  • PDF下载量:  290
出版历程
  • 收稿日期:  2011-09-01
  • 修回日期:  2011-10-18
  • 发布日期:  2013-06-15

目录

    /

    返回文章
    返回