动态高压微射流作用对膳食纤维结晶结构的影响

万婕 刘成梅 李俶 刘伟

万婕, 刘成梅, 李俶, 刘伟, . 动态高压微射流作用对膳食纤维结晶结构的影响[J]. 高压物理学报, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007
引用本文: 万婕, 刘成梅, 李俶, 刘伟, . 动态高压微射流作用对膳食纤维结晶结构的影响[J]. 高压物理学报, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007
WAN Jie, LIU Cheng-Mei, LI Ti, LIU Wei, . Effect of Dynamic High Pressure Microfluidization on the Crystal Structure of Dietary Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007
Citation: WAN Jie, LIU Cheng-Mei, LI Ti, LIU Wei, . Effect of Dynamic High Pressure Microfluidization on the Crystal Structure of Dietary Fiber[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 639-644. doi: 10.11858/gywlxb.2012.06.007

动态高压微射流作用对膳食纤维结晶结构的影响

doi: 10.11858/gywlxb.2012.06.007
详细信息
    通讯作者:

    李俶 E-mail:liti@ncu.edu.cn

Effect of Dynamic High Pressure Microfluidization on the Crystal Structure of Dietary Fiber

  • 摘要: 利用N2吸附法、X射线衍射、傅立叶红外光谱仪(FTIR)等手段,对动态高压微射流技术(Dynamic High Pressure Microfluidization,DHPM)处理前后膳食纤维的比表面积和结晶结构的变化进行表征,研究DHPM对膳食纤维结晶结构的影响。结果表明,经DHPM处理后,膳食纤维的比表面积显著高于未处理的原料膳食纤维(p0.05)。在40~140 MPa压力区间,样品的比表面积随DHPM处理压力的升高而增加,处理压力为140 MPa时,达到最大值为2.887 5 m2/g。压力继续增大,微小颗粒间的重新聚集,使其对N2的可及度减小,比表面积下降。X射线衍射结果显示,DHPM处理并没有使膳食纤维的晶型发生改变,为纤维素Ⅰ型。经DHPM处理后,样品表观结晶度显著减小,内部的有序度下降。处理压力越大样品的表观结晶度越小。FTIR光谱分析表明,DHPM处理会破坏膳食纤维内的部分氢键,处理压力越大,作用效果越明显。

     

  • Yoshiharu N, Paul L, Henri C. Crystal structure and hydrogen bonding system in cellulose I from synchrotron X-ray and neutron fiber diffraction [J]. J Am Chem Soc, 2002, 124: 9074- 9082.
    Qian X H, Ding S Y, Nimlos M R, et al. Atomic and electronic structures of molecular crystalline cellulose I: A first-principles investigation [J]. Macromolecules, 2005, 38(25): 10580- 10589.
    Gao P J, Pang S J. Changes in the supermolecular structure of native cellulose during biodegradation [J]. Bulletin of National Natural Science Foundation of China, 1998, 1: 35-37. (in Chinese)
    高培基, 庞世瑾. 天然纤维素在生物降解过程中超分子结构的变化 [J]. 中国科学基金, 1998, 1: 35-37.
    L B F, Shao Z Q, Yan L F. Study on the structure of cellulose treated by the high-pressure steam explosion method [J]. Journal of North China Institute of Technology, 2002, 23(4): 253-256. (in Chinese)
    吕秉峰, 邵自强, 严利芳. 纤维素高压蒸气闪爆改性前后结构表征研究 [J]. 华北工学院学报, 2002, 23(4): 253-256.
    Tang A M. The structure and properties of cellulose fibers treated with ultrasonic wave [D]. Guangzhou: South China University of Technology, 2000. (in Chinese)
    唐爱民. 超声波作用下纤维素纤维结构与性质研究 [D]. 广州: 华南理工大学, 2000.
    Hou A, Wang X, Wu L. Effect of microwave irradiation on the physical properties and morphological structures of cotton cellulose [J]. Carbohydrate Polymers, 2008, 74(4): 934-937.
    Hakansson A, Tragardh C, Bergenstahl B. Dynamic simulation of emulsion formation in a high pressure homogenizer [J]. Chem Eng Sci, 2009, 64(12): 2915-2925.
    Cruz N S, Capellas M, Jaramillo D P, et al. Soymilk treated by ultra-high-pressure homogenization: Acid coagulation properties and characteristics of a soy-yogurt product [J]. Food Hydrocolloids, 2009, 23: 490-496.
    Clemencia C L, Rosalba L, Annalisa S, et al. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability [J]. Food Control, 2009, 20(8): 691-695.
    Liu W, Liu J, Liu C, et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment [J]. Innov Food Sc Emerg, 2009, 10(2): 142-147.
    Liu W, Liu W L, Liu C M, et al. Preparation of medium-chain fatty acids (MCFA) nano-liposome by means of high pressure microfluidization (HPM) [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 293-299. (in Chinese)
    刘伟, 刘玮琳, 刘成梅, 等. 高压微射流制备纳米中链脂肪酸脂质体的研究 [J]. 高压物理学报, 2010, 24(4): 293-299.
    Wan J, Liu C M, Lan H J, et al. Effects of dynamic instantaneous high pressure treatment on the enzymolysis rate of dietary fiber [J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 439-444. (in Chinese)
    万婕, 刘成梅, 蓝海军, 等. 动态瞬时高压作用对膳食纤维酶解速度的影响 [J]. 高压物理学报, 2008, 22(4): 439-444.
    Cheng X, Yang X J, Xu Y H, et al. The research of conditions for extraction of soybean dregs natural cellulose [J]. Soybean Science, 2001, 20(2): 128-132. (in Chinese)
    陈霞, 杨香久, 徐永华, 等. 豆渣膳食纤维制备工艺的研究 [J]. 大豆科学, 2001, 20(2): 128-132.
    Ma W Y, Ding M Y, Yang H J, et al. Particle size analysis of micro-nano dispersion system [J]. Science and Technology of Lcic, 2001, (4): 213-216. (in Chinese)
    马万云, 丁明玉, 洋海军, 等. 微纳颗粒分散体系的粒度分析 [J]. 石化技术与应用, 2001, (4): 213-216.
    Pan Y, Zhu P. Physicochemical properties of bacterial cellulose and its application [J]. Synthetic Fiber in China, 2007, (9): 6-10. (in Chinese)
    潘颖, 朱平. 细菌纤维素的理化特性及其应用开发 [J]. 合成纤维, 2007, (9): 6-10.
    Sowbhagya H B, Suma P F, Mahadevamma S, et al. Spent residue from cumin-A potential source of dietary fiber [J]. Food Chem, 2007, 104(3): 1220-1225.
    Mathlonthi M, Koenig J L. Vibrational spectra of carbohydrates [J]. Adv Carbohyd Chem B, 1986, 44: 7-89.
    Liu W, Li H K, Liu C M, et al. Numerical simulation of microchannel of dynamic high-pressure microfluidization based on fluent [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. (in Chinese)
    刘伟, 李火坤, 刘成梅, 等. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟 [J]. 高压物理学报, 2012, 26(1): 113-120.
  • 加载中
计量
  • 文章访问数:  7404
  • HTML全文浏览量:  295
  • PDF下载量:  551
出版历程
  • 收稿日期:  2012-08-25
  • 修回日期:  2012-11-12
  • 发布日期:  2012-12-15

目录

    /

    返回文章
    返回