甲烷-煤尘爆炸物火焰传播特性

牛芳 刘庆明 白春华 何学秋 宫广东

牛芳, 刘庆明, 白春华, 何学秋, 宫广东. 甲烷-煤尘爆炸物火焰传播特性[J]. 高压物理学报, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015
引用本文: 牛芳, 刘庆明, 白春华, 何学秋, 宫广东. 甲烷-煤尘爆炸物火焰传播特性[J]. 高压物理学报, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015
NIU Fang, LIU Qing-Ming, BAI Chun-Hua, HE Xue-Qiu, GONG Guang-Dong. Flame Propagation and Combustion in Methane-Coal-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015
Citation: NIU Fang, LIU Qing-Ming, BAI Chun-Hua, HE Xue-Qiu, GONG Guang-Dong. Flame Propagation and Combustion in Methane-Coal-Air Mixture[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 455-461. doi: 10.11858/gywlxb.2012.04.015

甲烷-煤尘爆炸物火焰传播特性

doi: 10.11858/gywlxb.2012.04.015
详细信息
    通讯作者:

    刘庆明 E-mail:qmliu@bit.edu.cn

Flame Propagation and Combustion in Methane-Coal-Air Mixture

  • 摘要: 在10 m3的爆炸罐中对体积分数为8%的甲烷和75 g/m3煤尘的混合物进行了系统的燃烧爆炸实验。分别利用光测方法和压力方法得到了爆炸物的层流燃烧速度、火焰传播速度、火焰厚度、马克斯坦长度以及爆炸特征值的变化规律。结果表明,在常温常压下,当点火能为40 J时:利用光测法得到的8%甲烷与75 g/m3煤尘混合物的燃烧速度为0.437 m/s,而根据压力-时间关系得到的混合物燃烧速度为0.459 m/s,两者符合较好;用火焰厚度与马克斯坦长度判定的火焰发展趋势相同,即向外传播的火焰趋于稳定;爆炸物的爆炸特征值最大值出现在0.5 m处,壁面的爆炸特征值偏小。

     

  • Sun J H, Dobashib R, Hirano T. Structure of flames propagating through aluminum particles cloud and combustion process of particles [J]. J Loss Prev Process Ind, 2006, 19(6): 769-773.
    Eckhoff R K. Current status and expected future trends in dust explosion research [J]. J Loss Prev Process Ind, 2005, 18: 225-237.
    Kolbe M. Laminar burning velocity measurements of stabilized aluminum dust flames [D]. Montreal, Quebec, Canada: Concordia University, 2001.
    Yu G, Law C K, Wu C K. Laminar flame speeds of hydrocarbon-air mixtures with hydrogen addition [J]. Combust Flame, 1986, 63(3): 339-347.
    Bosschaart K J, de Goey L P H, Burgers J M. The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method [J]. Combust Flame, 2004, 136(3): 261-269.
    Bosschaart K J, de Goey L P H. Detailed analysis of the heat-flux method for measuring burning velocities [J]. Combust Flame, 2003, 132: 170-180.
    Miao H Y, Ji M, Jiao Q, et al. Laminar burning velocity and Markstein length of nitrogen diluted natural gas/hydrogen/air mixtures at normal, reduced and elevated pressures [J]. Int J Hydrogen Energy, 2009, 34(7): 3145-3155.
    Burke M P, Chen Z, Ju Y G, et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames [J]. Combust Flame, 2009, 156(4): 771-779.
    Bradley D, Chen Z, Swithenbank J K. Burning rates in turbulent fine dust-air explosions [A]//Proceedings of the 22nd International Symposium on Combustion [C]. Pittsburgh, US, 1989: 1767-1775.
    Bradley D, Mitcheson A. Mathematical solutions for explosions in spherical vessels [J]. Combust Flame, 1976, 26: 201-217.
    Kwon O C, Rozenchan G, Law C K. Cellular instabilities and self-acceleration of outwardly propagating spherical flames [J]. Proc Combust Inst, 2002, 29(2): 1775-1783.
    Eckhoff R K. Dust Explosions in the Process Industries [M]. 3rd ed. Oxford, UK: Gulf Professional Publishing, 2003: 268.
  • 加载中
计量
  • 文章访问数:  7336
  • HTML全文浏览量:  319
  • PDF下载量:  609
出版历程
  • 收稿日期:  2010-10-24
  • 修回日期:  2011-01-31
  • 发布日期:  2012-08-15

目录

    /

    返回文章
    返回