PbTe纳米晶高压热电性能的研究

张向国 穆鑫 张增明 丁泽军

张向国, 穆鑫, 张增明, 丁泽军. PbTe纳米晶高压热电性能的研究[J]. 高压物理学报, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004
引用本文: 张向国, 穆鑫, 张增明, 丁泽军. PbTe纳米晶高压热电性能的研究[J]. 高压物理学报, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004
ZHANG Xiang-Guo, MU Xin, ZHANG Zeng-Ming, DING Ze-Jun. Thermoelectric Properties of Nanoparticle PbTe under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004
Citation: ZHANG Xiang-Guo, MU Xin, ZHANG Zeng-Ming, DING Ze-Jun. Thermoelectric Properties of Nanoparticle PbTe under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 141-147. doi: 10.11858/gywlxb.2012.02.004

PbTe纳米晶高压热电性能的研究

doi: 10.11858/gywlxb.2012.02.004
详细信息
    通讯作者:

    张增明 E-mail:zzm@ustc.edu.cn

Thermoelectric Properties of Nanoparticle PbTe under Hydrostatic Pressure

  • 摘要: 利用自建的400 t四柱双缸液压机,研究了PbTe纳米晶在0~0.8 GPa压力范围内热电性能随压力的变化。实验结果表明:PbTe纳米晶电导率随压力的增加而增加,而热电动势随压力的增加而减小,两者随压力的变化具有可逆性;PbTe纳米晶具有极高的热电动势,在常压下达到565 V/K,在0.8 GPa压力下,材料的电导率为常压下的4倍,热电动势仅降低20%,功率因子则达到常压下的3倍。研究表明,高压能显著提高PbTe纳米晶的热电性能。利用第一性原理计算了0.4~4.0 GPa压力范围内材料的简约费米能级,计算结果与实验结果相吻合。

     

  • Goldsmid H J. Thermoelectric Refrigeration [M]. New York: Plenum Press, 1964.
    Min G, Rowe D M. Cooling performance of integrated thermoelectric microcooler[J]. Solid State Electron, 1999, 43(5): 923-929.
    Stark I, Stordeur M. New micro thermoelectric devices based on bismuth telluride-type thin solid films [A]//18th International Conference on Thermoelectrics [C]. Baltimore, 1999: 465-472.
    Tritt T M. Thermoelectric materials: holey and unholey semiconductors [J]. Science, 1999, 283(5403): 804-805.
    Chen D Y, Ying P Z, Cui J L, et al. Research situation and application of thermoelectric materials [J]. Mater Rev, 2008, 22(S1): 280-282. (in Chinese)
    陈东勇, 应鹏展, 崔教林, 等. 热电材料的研究现状及应用 [J]. 材料导报, 2008, 22(S1): 280-282.
    Rowe D M, Bhandari C M. Effect of grain size on the thermoelectric conversion efficiency of semiconductor alloys at high temperature [J]. Appl Energ, 1980, 6: 347-351.
    Toprak M S, Stiewe C, Platzek D, et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3 [J]. Adv Funct Mater, 2004, 14: 1189-1196.
    Dresselhaus M S, Chen G, Tang M Y, et al. New directions for low-dimensional thermoelectric materials [J]. Adv Mater, 2007, 19: 1043-1053.
    Dughaish Z H. Lead telluride as a thermoelectric material for thermoelectric power generation [J]. Phys B, 2002, 322: 205-223.
    McGuirea M A, Malik A S, DiSalvo F J. Effects of high-pressure high-temperature treatment on the thermoelectric properties of PbTe [J]. J Alloys Compd, 2008, 460: 8-12.
    Zhu P W, Chen L X, Jia X. Thermoelectric properties of PbTe prepared at high pressure and high temperature [J]. J Phys: Condens Matter, 2002, 14: 11185-11188.
    Ren G Z, Jia X P, Zhu P W, et al. In situ measurement of electrical character of PbTe at high pressure and high temperature [J]. Chin Phys Lett, 2005, 22(1): 236-238.
    Ovsyannikov S V, Shchennikov V V. Pressure-tuned colossal improvement of thermoelectric efficiency of PbTe [J]. Appl Phys Lett, 2007, 90(122103): 1-3.
    Yan Q Y, Chen H, Zhou W W. A simple chemical approach for PbTe nanowires with enhanced thermoelectric properties [J]. Chem Mater, 2008, 20: 6298-6300.
    Zhang W X, Zhang L, Cheng Y W. Synthesis of nanocrystalline lead chalcogenides PbE(E=S, Se, or Te) from alkaline aqueous solutions [J]. Mater Res Bull, 2000, 35: 2009-2015.
    Zhu T J, Liu Y Q, Zhao X B. Synthesis of PbTe thermoelectric materials by alkaline reducing chemical routes[J]. Mater Res Bull, 2008, 43: 2850-2854.
    Su F, Dai W P, Su X. Enhancement of both ionic conductivity and permittivity of the high polymer film P(EO)n-CuBr2 under hydrostatic pressure(Ⅱ)-Application of method to add pPlasticizer [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 161-168. (in Chinese)
    苏昉, 戴卫平, 苏骁. 高聚物P(EO)n-CuBr2薄膜在流体静高压下离子电导率和介电常数的提高(Ⅱ)添加增塑剂方法的应用 [J]. 高压物理学报, 2001, 15(3): 161-168.
    Androulakis J, Hsu K F, Pcionek R. Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1-ySny)mSbTe2+m [J]. Adv Mater, 2006, 18: 1170-1173.
    Seeger K. Semiconductor Physics: An Introduction [M]. India: Springer Pvt Ltd, 2007.
    Wang Y, Chen X, Cui T. Enhanced thermoelectric performance of PbTe within the orthorhombic Pnma phase [J]. Phys Rev B, 2007, 76(155127): 1-10.
    Zhao L D, Zhang B P, Liu W S, et al. Effect of mixed grain sizes on thermoelectric performance of Bi2Te3, compound [J], J Appl Phys, 2009, 105: 023704.
    Rached D. Calculated band structures and optical properties of lead chalcogenides PbX(X=S, Se, Te) under hydrostatic pressure [J]. Phys B, 2003, 337: 394-403.
    Nabi Z, Abbar B, Mebih S. Pressure dependence of band gaps in PbS, PbSe and PbTe [J]. Comp Mater Sci, 2000, 18: 127-131.
    Cao Y Q, Zhu T J, Zhao X B. Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys [J]. J Phys D: Appl Phys, 2009, 42(015406): 1-6.
  • 加载中
计量
  • 文章访问数:  8084
  • HTML全文浏览量:  477
  • PDF下载量:  601
出版历程
  • 收稿日期:  2010-09-30
  • 修回日期:  2011-05-26
  • 发布日期:  2012-04-15

目录

    /

    返回文章
    返回