基于FLUENT的动态高压微射流内部孔道流场的数值模拟

刘伟 李火坤 刘成梅 刘玮琳

刘伟, 李火坤, 刘成梅, 刘玮琳. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J]. 高压物理学报, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
引用本文: 刘伟, 李火坤, 刘成梅, 刘玮琳. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J]. 高压物理学报, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
LIU Wei, LI Huo-Kun, LIU Cheng-Mei, LIU Wei-Lin. Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017
Citation: LIU Wei, LI Huo-Kun, LIU Cheng-Mei, LIU Wei-Lin. Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 113-120. doi: 10.11858/gywlxb.2012.01.017

基于FLUENT的动态高压微射流内部孔道流场的数值模拟

doi: 10.11858/gywlxb.2012.01.017
详细信息
    通讯作者:

    刘成梅 E-mail:chengmeiliu@yahoo.com.cn

Numerical Simulation of Microchannel of Dynamic High-Pressure Microfluidization Based on FLUENT

  • 摘要: 以动态高压微射流振荡反应腔内部孔道流场为研究对象,建立了反应腔内部孔道的几何模型和网格模型,选择SIMPLEC算法和RNG k-模型,运用FLUENT软件对流场进行数值模拟,以揭示流场内各位置上的静压和速度分布。计算结果表明:高速射流撞击增加了流场内的撞击作用力,流速的急剧增加使速度梯度迅速加大,剪切应力极大增强,保证了微射流均质机极佳的作用效果;由于反应腔内部孔道流场的静压与速度变化相反,静压的急剧变化使空穴效应及压力释放效应极大增强,空穴作用力得以强化,对微射流均质机反应腔内的材料产生腐蚀作用。设计反应腔内部孔道时,在保证撞击区速度的前提下,应适当减小进料速度和分流管进口拐角角度,并选用较短的出料管。

     

  • Liu W, Liu J H, Xie M Y, et al. Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese pear (Pyrus pyrifolia Nakai) [J]. J Agric Food Chem, 2009, 57(12): 5376-5380.
    Paquin P. Technological properties of high pressure homogenizers: The effect of fat globules, milk proteins, and polysaccharides [J]. Int Dairy J, 1999, 9(3-6): 329-335.
    Laneuville S I, Paquin P, Turgeon S L. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes [J]. Food Hydrocolloid, 2000, 14(4): 305-314.
    Yuan Y, Gao Y, Zhao J, et al. Characterization and stability evaluation of beta-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions [J]. Food Res Int, 2008, 41(1): 61-68.
    Liu W, Liu J H, Liu C M, et al. Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment [J]. Innovat Food Sci Emerg Tech, 2009, 10(2): 142-147.
    Liu W, Zhang Z Q, Liu C M, et al. The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin [J]. Food Chem, 2010, 123(3): 616-621.
    Clemencia C L, Rosalba L, Annalisa S, et al. Effect of high pressure homogenization applied individually or in combination with other mild physical or chemical stresses on Bacillus cereus and Bacillus subtilis spore viability [J]. Food Control, 2009, 20(8): 691-695.
    Liu W, Liu W L, Liu C M, et al. Preparation of medium-chain fatty acids (MCFA) nano-liposome by means of high pressure microfluidization (HPM) [J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 293-299. (in Chinese)
    刘伟, 刘玮琳, 刘成梅, 等. 高压微射流制备纳米中链脂肪酸脂质体的研究 [J]. 高压物理学报, 2010, 24(4): 293-299.
    Mohr K H. High-pressure homogenization. Part Ⅰ. Liquid-liquid dispersion in turbulence fields of high energy density [J]. J Food Eng, 1987, 6(3): 177-186.
    Soon S Y, Harbridge J, Titchener-Hooker N J, et al. Prediction of drop breakage in an ultra high velocity jet homogenizer [J]. J Chem Eng Jpn, 2001, 34(5): 640-646.
    Hkansson A, Trgrdh C, Bergensthl B. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model [J]. Food Hydrocolloids, 2009, 23(4): 1177-1183.
    Feijoo S C, Hayes W W, Watson C E, et al. Effects of microfluidizer technology on Bacillus licheniformis spores in ice cream mix [J]. J Dairy Sci, 1997, 80(9): 2184-2187.
    Liu W, Liu C M, Ruan R S, et al. Analysis of heat conversion of pressure and energy in the high hydrostatic pressure processing [J]. Food Science, 2003, 24(7): 162-164. (in Chinese)
    刘伟, 刘成梅, 阮榕生, 等. 高压处理过程中的压力和能量分析 [J]. 食品科学, 2003, 24(7): 162-164.
    Liu C M, Liu W, Gao Y Y, et al. Analysis on fluid dynamic behavior in high velocity jet homogenizer [J]. Food Science, 2004, 25(4): 58-62. (in Chinese)
    刘成梅, 刘伟, 高荫榆, 等. 微射流均质机的流体动力学行为分析 [J]. 食品科学, 2004, 25(4): 58-62.
    Zhou Z G, Ma D Y. Numerical simulation of high-pressure jet nozzle based on fluent [J]. Machine Building and Automation, 2010, 39(1): 61-62. (in Chinese)
    周章根, 马德毅. 基于Fluent的高压喷嘴射流的数值模拟 [J]. 机械制造与自动化, 2010, 39(1): 61-62.
    Zhao Y. Refined lanczos type methods for computing a partial singular value decomposition of a large matrix [D]. Dalian: Dalian University of Technology, 2004. (in Chinese)
    赵妍. 应用FLUENT对管路细部流场的数值模拟 [D]. 大连: 大连理工大学, 2004.
  • 加载中
计量
  • 文章访问数:  8077
  • HTML全文浏览量:  404
  • PDF下载量:  544
出版历程
  • 收稿日期:  2010-06-29
  • 修回日期:  2010-11-24
  • 发布日期:  2012-02-15

目录

    /

    返回文章
    返回