煤矿巷道瓦斯爆炸冲击波与高温气流的关系

庞磊 张奇 李伟 向聪 谭汝媚

庞磊, 张奇, 李伟, 向聪, 谭汝媚. 煤矿巷道瓦斯爆炸冲击波与高温气流的关系[J]. 高压物理学报, 2011, 25(5): 457-462 . doi: 10.11858/gywlxb.2011.05.012
引用本文: 庞磊, 张奇, 李伟, 向聪, 谭汝媚. 煤矿巷道瓦斯爆炸冲击波与高温气流的关系[J]. 高压物理学报, 2011, 25(5): 457-462 . doi: 10.11858/gywlxb.2011.05.012
PANG Lei, ZHANG Qi, LI Wei, XIANG Cong, TAN Ru-Mei. Relationship between Shock Wave and High-Temperature Flow Produced by Gas Explosion in Coal Mine Roadways[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 457-462 . doi: 10.11858/gywlxb.2011.05.012
Citation: PANG Lei, ZHANG Qi, LI Wei, XIANG Cong, TAN Ru-Mei. Relationship between Shock Wave and High-Temperature Flow Produced by Gas Explosion in Coal Mine Roadways[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 457-462 . doi: 10.11858/gywlxb.2011.05.012

煤矿巷道瓦斯爆炸冲击波与高温气流的关系

doi: 10.11858/gywlxb.2011.05.012
详细信息
    通讯作者:

    庞磊

Relationship between Shock Wave and High-Temperature Flow Produced by Gas Explosion in Coal Mine Roadways

More Information
    Corresponding author: PANG Lei
  • 摘要: 为了给瓦斯爆炸后煤尘二次爆炸的深入研究提供理论依据,应用计算流体力学方法,对煤矿巷道内瓦斯爆炸的瞬态流场进行了数值模拟,得到了冲击波与高温气流流动的时空关系,并借助实验对数值方法进行了验证。研究表明:在瓦斯爆炸后的一定时间内,近场区域和远场的部分区域极有可能引发煤尘二次爆炸。给出了可能发生煤尘二次爆炸的区域随瓦斯区长度的函数关系式,以及远场中峰值温度和峰值超压到达时间的间隔随轴向距离和瓦斯区长度的分布特性。

     

  • Akinori H, Akiko M. Numerical Analysis of Gas Explosion inside Two Rooms Connected by Ducts [J]. J Loss Prevent Process Indus, 2007, 20(4-6): 455-461.
    Silvestrini M, Genova B, Parisi G, et al. Flame Acceleration and DDT Run-up Distance for Smooth and Obstacles Filled Tubes [J]. J Loss Prevent Process Indus, 2008, 21(5): 555-562.
    Burluka A A, Griffiths J F, Liu K, et al. Experimental Studies of the Role of Chemical Kinetics in Turbulent Flames [J]. Combustion, Explosion, Shock Waves, 2009, 45(4): 383-391.
    Pang L, Zhang Q. Influence of Vapor Cloud Shape on Temperature Field of Unconfined Vapor Cloud Explosion [J]. Chinese J Chem Eng, 2010, 18(1): 164-169.
    Baker W E, Cox P A, Westine P S, et al. Explosion Hazards and Evaluation [M]. New York: Elsevier Scientific Publishing Company, 1983: 556-560.
    Yu D M. The Study of Evaluation of Major Hazards and Accident Severity of Fire and Explosion [D]. Beijing: Beijing Institute of Technology, 1997: 75-76. (in Chinese)
    宇德明. 重大危险源的评价及火灾爆炸事故严重度的若干研究 [D]. 北京: 北京理工大学, 1997: 75-76.
    Salzano E, Marra F S, Russo G, et al. Numerical Simulation of Turbulent Gas Flames in Tubes [J]. Journal of Hazardous Materials, 2002, 95(3): 233-247.
    Bray K N C. Studies of the Turbulent Burning Velocity [J]. Proc Roy Soc London, 1990, 431(1882): 315-335.
    Kindracki J, Kobiera A, Rarata G, et al. Influence of Ignition Position and Obstacles on Explosion Development in Methane-Air Mixture in Closed Vessels [J]. J Loss Prevent Process Indus, 2007, 20(4-6): 551-561.
    Xu J D, Zhou X Q, Wu B. Study on the Size Effect in the Propagation of Gas Explosion in Mine Pit [J]. China Safety Science Journal, 2001, 11(6): 36-40. (in Chinese)
    徐景德, 周心权, 吴兵. 矿井瓦斯爆炸传播的尺度效应研究 [J]. 中国安全科学学报, 2001, 11(6): 36-40.
  • 加载中
计量
  • 文章访问数:  8368
  • HTML全文浏览量:  393
  • PDF下载量:  521
出版历程
  • 收稿日期:  2010-06-21
  • 修回日期:  2010-09-25
  • 发布日期:  2011-10-15

目录

    /

    返回文章
    返回