橡胶材料的动态压缩性能及其应变率相关的本构模型

庞宝君 杨震琦 王立闻 迟润强

庞宝君, 杨震琦, 王立闻, 迟润强. 橡胶材料的动态压缩性能及其应变率相关的本构模型[J]. 高压物理学报, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005
引用本文: 庞宝君, 杨震琦, 王立闻, 迟润强. 橡胶材料的动态压缩性能及其应变率相关的本构模型[J]. 高压物理学报, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005
PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005
Citation: PANG Bao-Jun, YANG Zhen-Qi, WANG Li-Wen, CHI Run-Qiang. Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material[J]. Chinese Journal of High Pressure Physics, 2011, 25(5): 407-415 . doi: 10.11858/gywlxb.2011.05.005

橡胶材料的动态压缩性能及其应变率相关的本构模型

doi: 10.11858/gywlxb.2011.05.005
详细信息
    通讯作者:

    杨震琦

Dynamic Compression Properties and Constitutive Model with Strain Rate Effect of Rubber Material

More Information
    Corresponding author: YANG Zhen-Qi
  • 摘要: 利用Instron万能试验机与LC4超硬铝合金分离式Hopkinson压杆设备,对3种不同波阻抗的橡胶材料炭黑母胶(Carbon Black Rubber)、硅橡胶(Silicone Rubber)和泡沫橡胶(Foam Rubber)在较大应变率范围(0.002~15 000s-1)内进行了单轴压缩实验,研究应变率对橡胶材料力学性能的影响。实验结果表明:3种橡胶的准静态与动态应力-应变曲线具有不同的应变硬化形式,且动态加载下随着应变率的增大,硬化效应逐渐增强;在准静态及高应变率(12 000~15 000 s-1)压缩下,泡沫橡胶表现出多孔类材料压缩曲线的弹性、塑性崩塌及致密化3段特征。基于Rivilin应变能模型,构建了一个应变率相关的动态本构模型,模拟结果与实验结果吻合较好,可以用于描述较大应变率范围内3种橡胶的非线性应力-应变关系。

     

  • Boyce M C, Arruda E M. Constitutive Models of Rubber Elasticity: A Review [J]. Rubber Chem Technol, 2000, 73(3): 504-523.
    Treloar L R G. The Physics of Rubber Elasticity [M]. Oxford: Oxford University Press, 1975: 1-208.
    Sarva S S, Deschanel S, Boyce M C, et al. Stress-Strain Behavior of a Polyurea and a Polyurethane from Low to High Strain Rates [J]. Polymer, 2007, 48(8): 2208-2213.
    Zhao H, Elnasri I, Abdennadher S. An Experimental Study on the Behaviour under Impact Loading of Metallic Cellular Materials [J]. Int J Mech Sci, 2005, 47(4-5): 757-774.
    Chen W, Zhang B, Forrestal M J. A Split Hopkinson Bar Technique for Low-Impedance Materials [J]. Exp Mech, 1999, 39(2): 81-85.
    Song B, Chen W. Dynamic Stress Equilibration in Split Hopkinson Pressure Bar Tests on Soft Materials [J]. Exp Mech, 2004, 44(3): 300-312.
    Pang B J, Yang Z Q, Wang L W, et al. PVDF Stress Gauges Dynamic Stress Measurement and Its Application to SHPB Experiment for Rubber Materials [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 359-367. (in Chinese)
    庞宝君, 杨震琦, 王立闻, 等. PVDF压电计的动态响应特性及其在橡胶材料SHPB实验中的应用 [J]. 高压物理学报, 2010, 24(5): 359-367.
    Song B, Chen W. One-Dimensional Dynamic Compressive Behavior of EPDM Rubber [J]. J Eng Mater Technol, 2003, 125(3): 294-301.
    Wang B J, Hu S S, Zhou X R. Research of Dynamic Mechanical Behavior and Constitutive Model of Rubber under Different Temperatures [J]. Journal of Experimental Mechanics, 2007, 22(1): 1-6. (in Chinese)
    王宝珍, 胡时胜, 周相荣. 不同温度下橡胶的动态力学性能及本构模型研究 [J]. 实验力学, 2007, 22(1): 1-6.
    Lin Y L, Lu F Y, Lu L. Constitutive Behaviors of a Silicone Rubber at High Strain Rates [J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 289-294. (in Chinese)
    林玉亮, 卢芳云, 卢力. 高应变率下硅橡胶的本构行为研究 [J]. 高压物理学报, 2007, 21(3): 289-294.
  • 加载中
计量
  • 文章访问数:  8852
  • HTML全文浏览量:  327
  • PDF下载量:  761
出版历程
  • 收稿日期:  2010-05-21
  • 修回日期:  2010-09-15
  • 发布日期:  2011-10-15

目录

    /

    返回文章
    返回