冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟

傅华 赵峰 谭多望 王文强 尚海林

傅华, 赵峰, 谭多望, 王文强, 尚海林. 冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟[J]. 高压物理学报, 2011, 25(1): 8-14 . doi: 10.11858/gywlxb.2011.01.002
引用本文: 傅华, 赵峰, 谭多望, 王文强, 尚海林. 冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟[J]. 高压物理学报, 2011, 25(1): 8-14 . doi: 10.11858/gywlxb.2011.01.002
FU Hua, ZHAO Feng, TAN Duo-Wang, WANG Wen-Qiang, SHANG Hai-Lin. Mesoscale Simulation of Cavity Collapse Hot Spot Mechanism in HMX under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 8-14 . doi: 10.11858/gywlxb.2011.01.002
Citation: FU Hua, ZHAO Feng, TAN Duo-Wang, WANG Wen-Qiang, SHANG Hai-Lin. Mesoscale Simulation of Cavity Collapse Hot Spot Mechanism in HMX under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 8-14 . doi: 10.11858/gywlxb.2011.01.002

冲击作用下HMX晶体孔洞塌缩热点生成机制的细观数值模拟

doi: 10.11858/gywlxb.2011.01.002
详细信息
    通讯作者:

    傅华

Mesoscale Simulation of Cavity Collapse Hot Spot Mechanism in HMX under Shock Loading

More Information
    Corresponding author: FU Hua
  • 摘要: 热点的形成、点火以及成长过程是理解非均匀炸药冲击起爆的关键。采用离散元法,对冲击作用下含孔洞的HMX晶体进行了细观数值模拟。计算结果表明:在较低冲击作用下,孔洞边缘发生了较大的剪切变形,粘塑性功形成热点;而在较高冲击作用下,孔洞塌缩产生射流,汇聚流动,冲击下游炸药形成热点,并获得了孔洞塌缩和热点生成演化的细观过程。

     

  • Campell A W, Davis W G, Travis J R. Shock Initiation of Detonation in Liquid Explosives [J]. Physics of Fluids, 1961, 4(4): 498.
    Zhang G R, Chen D N. The Initiation Dynamics in Condensed Explosives [M]. Beijing: National Defense Industry Press, 1991. (in Chinese)
    章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1991.
    Sun J S, Zhu J S. Theory Detonation Physics [M]. Beijing: National Defense Industry Press, 1995. (in Chinese)
    孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995.
    Sun C W, Wei Y Z, Zhou Z K. Application Detonation Physics [M]. Beijing: Science Press, 2000. (in Chinese)
    孙承伟, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 科学出版社, 2000.
    Dienes J K, Middleditch J, Kershner J D, et al. Progress in Statistical Crack Mechanics: An Approach to Initiation [A]//Proceedings of the 12th Symposium (International) on Detonation [C]. San Diego, 2002.
    DienesJ K, Kershner J D. Multiple-Shock Initiation via Statistical Crack Mechanics [A]//Proceedings of the 11th Symposium (International) on Detonation [C]. Colorado, 1998: 717-724.
    Dey T N, Kamm J R. Numerical Modeling of Shear Band Formation in PBX-9501 [A]//Proceedings of the 11th Symposium (International) on Detonation [C]. Colorado, 1998: 725-734 .
    Chitanvis S M. Hotspot Mechanisms in Shock-Melted Explosives [J]. AIP Conf Proc, 2004, 706: 319-322.
    Tang Z P, Horie Y, Psakhie S G. Discrete Meso-Element Dynamic Simulation of Shock Response of Reactive Porous Solids [J]. AIP Conf Proc, 1996, 370: 657-660.
    Tang Z P, Horie Y, Psakhie S G. Discrete Meso-Element Modeling of Shock Processes in Powders [A]//High-Pressure Shock Compression of Solids Ⅳ [C]. New York: Springer-Verlag, 1997: 143-176.
    Tang Z P, Horie Y, Psakhie S G. Discrete Meso-Element Modeling of Shock Processes in Powders, Vol. 1-Theory and Model Calculations [R]. Hefei: NCSU, 1995:
    Wang W Q. The Discrete Element Method and Its Application in Material and Structure Mechanics [D]. Hefei: USTC, 2000. (in Chinese)
    王文强. 离散元方法及其在材料和结构力学响应分析中的应用 [D]. 合肥: 中国科学技术大学, 2000.
  • 加载中
计量
  • 文章访问数:  8198
  • HTML全文浏览量:  551
  • PDF下载量:  482
出版历程
  • 收稿日期:  2009-05-16
  • 修回日期:  2009-12-30
  • 发布日期:  2011-02-15

目录

    /

    返回文章
    返回