微型超高压宝石喷嘴内部的空化与磨损

杨敏官 王育立 康灿 喻峰

杨敏官, 王育立, 康灿, 喻峰. 微型超高压宝石喷嘴内部的空化与磨损[J]. 高压物理学报, 2010, 24(4): 286-292 . doi: 10.11858/gywlxb.2010.04.008
引用本文: 杨敏官, 王育立, 康灿, 喻峰. 微型超高压宝石喷嘴内部的空化与磨损[J]. 高压物理学报, 2010, 24(4): 286-292 . doi: 10.11858/gywlxb.2010.04.008
YANG Min-Guan, WANG Yu-Li, KANG Can, YU Feng. Cavitation and Wear in the Micro Jewel Nozzle of Ultra-High Pressure Water Jet[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 286-292 . doi: 10.11858/gywlxb.2010.04.008
Citation: YANG Min-Guan, WANG Yu-Li, KANG Can, YU Feng. Cavitation and Wear in the Micro Jewel Nozzle of Ultra-High Pressure Water Jet[J]. Chinese Journal of High Pressure Physics, 2010, 24(4): 286-292 . doi: 10.11858/gywlxb.2010.04.008

微型超高压宝石喷嘴内部的空化与磨损

doi: 10.11858/gywlxb.2010.04.008
详细信息
    通讯作者:

    王育立

Cavitation and Wear in the Micro Jewel Nozzle of Ultra-High Pressure Water Jet

More Information
    Corresponding author: WANG Yu-Li
  • 摘要: 宝石喷嘴是影响超高压水射流切割系统工作效率的重要部件,而宝石内部的空化直接影响射流的形成,也是宝石磨损的重要原因之一。对400 MPa压力范围内宝石孔内部的空化两相流进行了数值模拟,阐述了射流在宝石内的形成过程,分析了长径比、压力和入口形状对宝石内空化的影响,并在相应压力下对宝石喷嘴的磨损进行了实验研究。结果表明:宝石内部的空化发展程度随着长径比的增大而减弱;在一定的长径比范围内,空化可以发展到喷嘴出口,并最终使射流的初始直径小于喷嘴直径,且在此条件下当压力升高时,射流的初始直径增大;良好的入口形线可以降低空化的发展程度;宝石入口的磨损较出口更显著,空蚀和高压水的冲蚀造成了宝石孔边缘形状的破坏,这种破坏随着压力的升高而加剧,选择合适的长径比是减少冲蚀磨损的有效途径。

     

  • Osman A H, Mabrouki T, Thry B, et al. Experimental Analysis of High-Speed Air-Water Jet Flow in an Abrasive Water Jet Mixing Tube [J]. Flow Meas Instrum, 2004, 15(1): 37-48.
    Junkar M, Jurisevic B, Fajdiga M, et al. Finite Element Analysis of Single-Particle Impact in Abrasive Water Jet Machining [J]. Int J Impact Eng, 2006, 32(7): 1095-1112.
    Vikram G, Ramesh B N. Modelling and Analysis of Abrasive Water Jet Cut Surface Topography [J]. Int J Mach Tool Manuf, 2002, 42(12): 1345-1354.
    Palleda M. A Study of Taper Angles and Material Removal Rates of Drilled Holes in the Abrasive Water Jet Machining Process [J]. J Mater Process Technol, 2007, 189(1-3): 292-295.
    Hou R G, Huang C Z, Wang J, et al. Simulation of Velocity Field of Two-Phase Flow for Gas and Liquid in the Abrasive Water Jet Nozzle [J]. Key Eng Mater, 2006, 315-316: 150-153.
    Hou R G, Huang C Z, Wang J, et al. Simulation of Solid-Liquid Two-Phase Flow Inside and Outside the Abrasive Water Jet Nozzle [J]. Key Eng Mater, 2007, 339: 453-457.
    Liu H, Wang J, Kelson N, et al. A Study of Abrasive Waterjet Characteristics by CFD Simulation [J]. J Mater Process Technol, 2004, 153-154: 488-493.
    Shanmugam D K, Wang J, Liu H. Minimisation of Kerf Tapers in Abrasive Waterjet Machining of Alumina Ceramics Using a Compensation Technique [J]. Int J Mach Tool Manuf, 2008, 48(14): 1527-1534.
    Cui L L, An L Q, Mao L T, et al. Application of in Frared Thermal Testing and Mathematical Models for Studying the Temperature Distributions of the High-Speed Waterjet [J]. J Mater Process Technol, 2009, 209(9): 4360-4365.
    Anantharamaiah N, Vahedi Tafreshi N, Pourdeyhimi B. A Study on Flow Through Hydroentangling Nozzles and Their Degradation [J]. Chem Eng Sci, 2006, 61(14): 4582-4594.
  • 加载中
计量
  • 文章访问数:  7528
  • HTML全文浏览量:  286
  • PDF下载量:  664
出版历程
  • 收稿日期:  2009-06-22
  • 修回日期:  2009-09-08
  • 发布日期:  2010-08-15

目录

    /

    返回文章
    返回