空气中激光支持爆轰波实验及理论分析

陈朗 鲁建英 冯长根

陈朗, 鲁建英, 冯长根. 空气中激光支持爆轰波实验及理论分析[J]. 高压物理学报, 2010, 24(2): 154-160 . doi: 10.11858/gywlxb.2010.02.012
引用本文: 陈朗, 鲁建英, 冯长根. 空气中激光支持爆轰波实验及理论分析[J]. 高压物理学报, 2010, 24(2): 154-160 . doi: 10.11858/gywlxb.2010.02.012
CHEN Lang, LU Jian-Ying, FENG Chang-Gen. Experimental and Theoretical Investigation on Laser Supported Detonation Waves in Air[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 154-160 . doi: 10.11858/gywlxb.2010.02.012
Citation: CHEN Lang, LU Jian-Ying, FENG Chang-Gen. Experimental and Theoretical Investigation on Laser Supported Detonation Waves in Air[J]. Chinese Journal of High Pressure Physics, 2010, 24(2): 154-160 . doi: 10.11858/gywlxb.2010.02.012

空气中激光支持爆轰波实验及理论分析

doi: 10.11858/gywlxb.2010.02.012
详细信息
    通讯作者:

    陈朗

Experimental and Theoretical Investigation on Laser Supported Detonation Waves in Air

More Information
    Corresponding author: CHEN Lang
  • 摘要: 为了研究激光击穿空气产生的等离子体爆轰波形成机制和传播规律,利用高能量CO2激光器产生强激光,进行了空气中产生激光支持等离子体爆轰波实验。实验中:设置了诱导靶板,用于诱发和定位空气中的激光支持爆轰波;以激光器升压过程球隙放电产生的光信号作为触发源,触发高时间分辨率(纳秒级)的高速相机,记录了激光支持爆轰波的成长和传播全过程。分析了激光支持爆轰波的形成机理和传播规律。采用C-J爆轰理论,计算了激光支持爆轰波的压力和温度。研究结果表明:激光支持等离子体爆轰波形成初期,等离子体爆轰波发光体为球形;随着时间增加,等离子体爆轰波发光体的形状类似流星,且头部为等离子体前沿吸收层,亮度较高,而尾部等离子体温度较低,亮度较弱。等离子体爆轰波高速向激光源的方向移动,爆轰波速度高达18 km/s,温度约为107 K。随着激光强度的减弱,爆轰波速度迅速按指数规律衰减,当爆轰波吸收的激光能量不能有效支持爆轰波传播时,爆轰波转变为冲击波。

     

  • Steverding B. Ignition of Laser Detonation Waves [J]. J Appl Phys, 1974, 45(8): 3507-3511.
    Maher W E, Hall R B, Johnson R R. Experimental Study of Ignition and Propagation of Laser-Supported Detonation Waves [J]. J Appl Phys, 1974, 45(5): 2138-2145.
    Messitt D G, Myrabo L N, Mead Jr F B. Laser Initiated Blast Wave for Launch Vehicle Propulsion [A]//The 36th AIAA Joint Propulsion Conference [C]. Huntsville, Alabama: AIAA, 2000: 3848.
    Yan H, Adelgren R, Boguszko M, et al. Laser Energy Deposition in Quiescent Air [A]//The 41st Aerospace Sciences Meeting and Exhibit [C]. Reno, Nevada: AIAA, 2003: 1051.
    Kawahara N, Beduneau J L, Nakayama T, et al. Spatially, Temporally, and Spectrally Resolved Measurement of Laser-Induced Plasma in Air [J]. Appl Phys B, 2007, 86(4): 605-614.
    Lu J Y, Chen L, Feng C G. Evolution of Laser Supported Detonation Waves [J]. Science Technology Review, 2008, 26(10): 49-54. (in Chinese)
    鲁建英, 陈朗, 冯长根. 激光支持等离子体爆轰波流场研究 [J]. 科技导报, 2008, 26(10): 49-54.
    Raizer Y P. Heating of a Gas by a Powerful Light Pulse [J]. Soviet Physics JETP, 1965, 21: 1009-1017.
    Hettche L R, Tucker T R, Schriempf J T, et al. Mechanical Response and Thermal Coupling of Metallic Targets to High-Intensity 1. 06- Laser Radiation [J]. J Appl Phys, 1976, 47(4): 1415-1421.
    Kawahara N, Tomita E, Nakayama T, et al. Spatial and Temporal Characteristics of Laser-Induced Air Plasma [A]//The 44th Aerospace Sciences Meeting and Exhibit [C]. Reno, Nevada: AIAA, 2006: 1461.
    Mori K, Komurasaki K, Arakawa Y. Influence of the Focusing f Number on the Heating Regime Transition in Laser Absorption Waves [J]. J Appl Phys, 2002, 92(10): 5663-5667.
    Raizer Y P. Laser-Induced Discharge Phenomena: Studies in Soviet Science [M]. New York: Consultants Bureau, 1977: 199.
  • 加载中
计量
  • 文章访问数:  7472
  • HTML全文浏览量:  344
  • PDF下载量:  697
出版历程
  • 收稿日期:  2009-02-12
  • 修回日期:  2009-03-29
  • 发布日期:  2010-04-15

目录

    /

    返回文章
    返回