冲击加载下铝中孔洞长大的微观机理分析

崔新林 李英骏 祝文军 祁美兰 王海燕 贺红亮 刘建军

崔新林, 李英骏, 祝文军, 祁美兰, 王海燕, 贺红亮, 刘建军. 冲击加载下铝中孔洞长大的微观机理分析[J]. 高压物理学报, 2009, 23(1): 37-41 . doi: 10.11858/gywlxb.2009.01.006
引用本文: 崔新林, 李英骏, 祝文军, 祁美兰, 王海燕, 贺红亮, 刘建军. 冲击加载下铝中孔洞长大的微观机理分析[J]. 高压物理学报, 2009, 23(1): 37-41 . doi: 10.11858/gywlxb.2009.01.006
CUI Xin-Lin, LI Ying-Jun, ZHU Wen-Jun, QI Mei-Lan, WANG Hai-Yan, HE Hong-Liang, LIU Jian-Jun. Micro-Analysis of the Void Growth of Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 37-41 . doi: 10.11858/gywlxb.2009.01.006
Citation: CUI Xin-Lin, LI Ying-Jun, ZHU Wen-Jun, QI Mei-Lan, WANG Hai-Yan, HE Hong-Liang, LIU Jian-Jun. Micro-Analysis of the Void Growth of Aluminum under Shock Loading[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 37-41 . doi: 10.11858/gywlxb.2009.01.006

冲击加载下铝中孔洞长大的微观机理分析

doi: 10.11858/gywlxb.2009.01.006
详细信息
    通讯作者:

    贺红亮

Micro-Analysis of the Void Growth of Aluminum under Shock Loading

More Information
    Corresponding author: HE Hong-Liang
  • 摘要: 利用扫描电镜和透射电镜观测了冲击加载后高纯铝损伤状态孔洞的分布,发现在冲击波加载后,高纯铝中出现了大量的孔洞,孔洞大小多集中在百纳米尺度,分布不均匀,且呈现出带状形貌,局部区域的孔洞在冲击波作用下优先发展,孔洞长大,形成微米级的大孔洞。进一步的观测发现,在孔洞周围出现了大量的位错发射,发射方向位于{111}晶面上,是面心立方金属的密排面。运用分子动力学模拟进行了对比研究,验证了位错发射方向与观测结果是一致的。

     

  • Seaman L, Curran D R, Shockey D A. Computational Models for Ductile and Brittle Fracture [J]. J Appl Phys, 1976, 47(11): 4814-4826.
    Curran D R, Seaman L, Shockey D A. Dynamic Failure of Solid [J]. Phys Rep, 1987, 147: 253-388.
    Curran D R, Seaman L. Simplified Models of Fracture and Fragmentation [A]//Davison L, Grady D, Shahinpoor M. High-Pressure Shock Compression of Solids Ⅱ [C]. New York: Springer-Verlag, 1996: 340-365.
    Belak J. On the Nucleation and Growth of Voids at High Strain-Rates [J]. Journal of Computer-Aided Materials Design, 1998, 5: 193-206.
    Barbee J, Seaman L, Crewdson R, et al. Dynamic Fracture Criteria for Ductile and Brittle Metals [J]. Journal of Materials, JMLSA, 1972, 7(3): 393-401.
    Raj R, Ashby M F. Intergranular Fracture at Elevated Temperatures [J]. Acta Metallurgica, 1975, 23: 653-666.
    Rice J R. Dislocation Nucleation from a Crack Tip: An Analysis Based on the Peierls Concept [J]. J Mech Phys Solids, 1992, 40: 239-245.
    McClintock F A. A Criterion for Ductile Fracture by the Growth of Holes [J]. J Appl Mech, 1968, 5(3): 363-371.
    Rice J R, Tracey D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields [J]. J Mech Phys Solids, 1969, 17: 201-217.
    Kubota A, Reisman D B, Wolfer W G. Dynamic Strength of Metals in Shock Deformation [J]. Appl Phys Lett, 2006, 88(24): 241924(1)-241924(2).
    Mintmire J W, Robertson D H, White C T. Molecular-Dynamics Simulations of Void Collapse in Shocked Model-Molecular Solids [J]. Phys Rev B, 1994, 49(21): 14859-14864.
    Seppala E T, Belak J, Rudd R E. Effect of Stress Triaxiality on Void Growth in Dynamic Fracture of Metals: A Molecular Dynamics Study [J]. Phys Rev B, 2004, 69(13): 134101-134119.
    Davila L P, Erhart P, Bringa E M et al. Atomistic Modeling of Shock-Induced Void Collapse in Copper [J]. Appl Phys Lett, 2005, 86(16): 161902(1)-161902(3).
    Hatano T. Spatiotemporal Behavior of Void Collapse in Shocked Solids [J]. Phys Rev Lett, 2004, 92(1): 015503-015506.
    Hirth J P, Lothe J. Theory of Dislocations [M]. New York: Wiley Press, 1982: 306-320.
    Mishin Y, Farkas D, Mehl M J, et al. Interatomic Potentials for Monoatomic Metals from Experimental Data and ab Initio Calculations [J]. Phys Rev B, 1999, 59: 3393-3407.
    Honeycutt J D, Andersen H C. Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters [J]. J Phys Chem, 1987, 91: 4950-4963.
  • 加载中
计量
  • 文章访问数:  7758
  • HTML全文浏览量:  361
  • PDF下载量:  828
出版历程
  • 收稿日期:  2008-08-20
  • 修回日期:  2008-09-26
  • 发布日期:  2009-02-15

目录

    /

    返回文章
    返回