压力对金属铌中氦原子凝聚的影响

刘志明 崔田 何文炯 邹广田 韦孟伏 陈长安

刘志明, 崔田, 何文炯, 邹广田, 韦孟伏, 陈长安. 压力对金属铌中氦原子凝聚的影响[J]. 高压物理学报, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001
引用本文: 刘志明, 崔田, 何文炯, 邹广田, 韦孟伏, 陈长安. 压力对金属铌中氦原子凝聚的影响[J]. 高压物理学报, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001
LIU Zhi-Ming, CUI Tian, HE Wen-Jong, ZOU Guang-Tian, WEI Meng-Fu, CHEN Chang-An. Pressure Effects on the Behavior of Helium in Niobium[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001
Citation: LIU Zhi-Ming, CUI Tian, HE Wen-Jong, ZOU Guang-Tian, WEI Meng-Fu, CHEN Chang-An. Pressure Effects on the Behavior of Helium in Niobium[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 225-231 . doi: 10.11858/gywlxb.2008.03.001

压力对金属铌中氦原子凝聚的影响

doi: 10.11858/gywlxb.2008.03.001
详细信息
    通讯作者:

    崔田

Pressure Effects on the Behavior of Helium in Niobium

More Information
    Corresponding author: CUI Tian
  • 摘要: 采用零温条件下的赝势-平面波方法和有限温度下的Car-Parrinello分子动力学方法,模拟了不同压力环境下氦原子在金属铌中的行为特征,研究了宿主缺陷和氦泡的形成机制。结果表明,闭电子壳层的氦原子在金属铌中具有刚球模型特征,其占据区域为金属自由电子的禁区,从而破坏铌原子之间的金属性键合。在常温条件下,局域高浓度的氦原子优先凝聚于近邻宿主空位缺陷处,从而形成氦泡;完整晶格中高浓度的氦将促使铌原子易位,形成间隙-空位模式的宿主缺陷,氦原子聚集于空位区域。完整宿主在压力(40 GPa)的作用下,晶格参数减小,铌原子之间的相互作用增强,尽管氦原子的存在削弱了铌原子之间的相互作用,位于格点上的铌原子仍难以借助热振动偏离格点形成空位,因而未能形成间隙-空位对和氦泡。

     

  • Wang P X, Song J S. Helium in Materials and the Permeation of Tritium [M]. Beijing: National Defence Industry Press, 2002. (in Chinese)
    王佩璇, 宋家树. 材料中的氦及氚渗透 [M]. 北京: 国防工业出版社, 2002.
    Alefeld G, Volkl J. Hydrogen in Metal [M]. New York: Springer-Verlag, 1978.
    Wilson W D, Baskes M I, Bission C L. Atomistics of helium Bubble Formation in a Face-Centered-Cubic Metal [J]. Phys Rev B, 1976, 13: 2470-2478.
    Wilson W D, Bisson C L, Baskes M I. Self-Trapping of Helium in Metals [J]. Phys Rev B, 1981, 24: 616-5624.
    Jensen K O, Nieminen R M. Helium Bubbles in Metals: Molecular-Dynamics Simulations and Positron States [J]. Phys Rev B, 1987, 35: 2087-2090.
    Jensen K O, Nieminen R M. Noble-Gas Bubbles in Metals: Molecular-Dynamics Simulations and Positron States [J]. Phys Rev B, 1987, 36: 8219-8232.
    Raajaraman R, Viswannathan B, Valsakumar M C, et al. Anomalous Helium-Bubble Growth in Palladium [J]. Phys Rev B, 1994-I, 50: 597-600.
    Birtcher R, Donnelly S E, Templier C. Evolution of Helium Bubbles in Aluminum during Heavy-Ion Irradiation [J]. Phys Rrev B, 1994-II, 50: 764-769.
    Donnelly S E, Birtcher R C, Templier C, et al. Response of Helium Bubbles in Gold to Displacement-Cascade Damage [J]. Phys Rev B, 1995-II, 52: 3970-3976.
    Vassen R, Trinkaus H, Jung P. Helium Desorption from Fe and V by Atomic Diffusion and Bubble Migration [J]. Phys Rev B, 1991-I, 44: 4206-4213.
    CPMD, Copyright IBM Corp 1990-2005 [CP]. Copyright MPI fr Festko rperforschung Stuttgart, 1997-2001.
    Goedecker S, Teter M, Hutter J. Separable Dual-Space Gaussian Pseudopotentials [J]. Phys Rev B, 1996, 54: 1703-1710.
    Goedecker S. Integral Representation of the Fermi Distribution and Its Applications in Electronic-Structure Calculations [J]. Phys Rev B, 1993, 48: 17573-17575.
    Segall A M D, Lindan P L D, Probert M J, et al. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code [J]. J Phys: Conden Matter, 2002, 14: 2717-2743.
  • 加载中
计量
  • 文章访问数:  7315
  • HTML全文浏览量:  449
  • PDF下载量:  861
出版历程
  • 收稿日期:  2007-09-18
  • 修回日期:  2007-11-16
  • 发布日期:  2008-09-05

目录

    /

    返回文章
    返回