Mo高压熔化的分子动力学模拟

张弓木 刘海风 段素青

张弓木, 刘海风, 段素青. Mo高压熔化的分子动力学模拟[J]. 高压物理学报, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012
引用本文: 张弓木, 刘海风, 段素青. Mo高压熔化的分子动力学模拟[J]. 高压物理学报, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012
ZHANG Gong-Mu, LIU Hai-Feng, DUAN Su-Qing. Melting Property of Mo at High Pressure from Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012
Citation: ZHANG Gong-Mu, LIU Hai-Feng, DUAN Su-Qing. Melting Property of Mo at High Pressure from Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 53-56 . doi: 10.11858/gywlxb.2008.01.012

Mo高压熔化的分子动力学模拟

doi: 10.11858/gywlxb.2008.01.012
详细信息
    通讯作者:

    张弓木

Melting Property of Mo at High Pressure from Molecular Dynamics Simulation

More Information
    Corresponding author: ZHANG Gong-Mu
  • 摘要: 采用第一原理方法计算了钼在零温下的结构,表明钼在500 GPa以下一直保持bcc结构(常温),与实验一致。在零压附近计算了E-V关系,利用Murnaghan物态方程拟合得到了零压体积及其模量,与实验结果符合得很好。采用第一原理分子动力学模拟了钼的高压熔化性质。采用NVT系综计算了128个原子的系统,初始构形为bcc结构,体积分别为0.015 48、0.012 19、0.010 98、0.009 84、0.009 10 nm3/atom,计算了几个温度点,拟合得到了熔化曲线,熔化温度明显高于金刚石压砧(DAC)实验结果;将初始构形改变为fcc结构,模拟其熔化特性,得到的熔化温度明显下降,与激光加载DAC实验结果一致,认为可能的原因是钼熔化后形成的液体结构类似于fcc结构,而不是常态时的bcc结构。

     

  • Errandonea D, Schwager B, Ditz R, et al. Systematics of Transition-Metal Melting [J]. Phys Rev B, 2001, 63: 132104.
    Japel S, Schwager B, Boehler R, et al. Melting of Copper and Nickel at High Pressure: The Role of d Electrons [J]. Phys Rev Lett, 2005, 95: 167801.
    Williams Q, Jeanloz R, Bass J, et al. The Melting Curve of Iron to 250 GPa: A Constraint on the Temperature at Earth's Center [J]. Science, 1987, 236: 181.
    Belonoshko A B, Simak S I, Kochetov A E, et al. High Pressure Melting of Molybdenum [J]. Phys Rev Lett, 2004, 92: 195701.
    Hixons R S, Boness D A, Shaner J W, et al. Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression [J]. J Phys Rev Lett, 1989, 62: 637.
    Wang Y, Perdew J P. Correlation Hole of Spin-Polarized Electron Gas, with Exact Small-Wave-Vector and High-Density Scaling [J]. Phys Rev B, 1991, 44: 13298.
    Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals [J]. Phys Rev B, 1993, 47: R558.
    Kresse G, Furthmuller J. Efficency of ab Initio Total Energy Calculations for Metals and Semiconductors Using a Plane Basis Set [J]. Comput Mater Sci, 1996, 6: 15.
    Kresse G, Furthmuller J. Efficient Iterative Schemes for ab Initio Total Energy Calculations Using a Plane Wave Basis Set [J]. Phys Rev B, 1996, 54: 11169.
    Mao H K, Shaner J W. Specific Volume Measurements of Cu, Mo, Pd and Ag and Calibration of th Ruby Fluorescence Pressure Gauge from 0.06 to 1 Mbar [J]. J Appl Phys, 1978, 49: 3276-3283.
    Mao H K, Bell P M, Shaner J, et al. A System of Pressure Calibration for the Range 0. 05~1. 0 Mbar Based on Shock Wave Equations of State for Cu, Mo, Pd, and Ag [A]//Proc 6 AIRAPT Int Conf High Pressure Science and Technology [C]. Boulder, 1977: 739-747.
    Vohra Y K, Ruoff A L. Static Compression of Metals Mo, Pb and Pt to 272 GPa: Comrasision with Shock Data [J]. Phys Rev B, 1990, 42: 8651-8654
    Oelhafen P, Wahrenberg R, Stupp H. Electronic Structure of Liquid Transition Metals Studied by Time Resolve Photoelectron Spectroscopy [J]. J Phys: Condens Matter, 2000, 12: A9-A18.
  • 加载中
计量
  • 文章访问数:  7313
  • HTML全文浏览量:  357
  • PDF下载量:  906
出版历程
  • 收稿日期:  2007-02-23
  • 修回日期:  2007-05-18
  • 发布日期:  2008-03-05

目录

    /

    返回文章
    返回