Eu3+离子掺杂钛酸盐纳米管的直接水热合成与发光性能

宋功保 王美丽 苗兰冬 李健 张宝述

宋功保, 王美丽, 苗兰冬, 李健, 张宝述. Eu3+离子掺杂钛酸盐纳米管的直接水热合成与发光性能[J]. 高压物理学报, 2007, 21(3): 305-310 . doi: 10.11858/gywlxb.2007.03.015
引用本文: 宋功保, 王美丽, 苗兰冬, 李健, 张宝述. Eu3+离子掺杂钛酸盐纳米管的直接水热合成与发光性能[J]. 高压物理学报, 2007, 21(3): 305-310 . doi: 10.11858/gywlxb.2007.03.015
SONG Gong-Bao, WANG Mei-Li, MIAO Lan-Dong, LI Jian, ZHANG Bao-Shu. Direct Hydrothermal Synthesis and Luminescence Property of Titanate Nanotubes Doped with Eu3+ Ions[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 305-310 . doi: 10.11858/gywlxb.2007.03.015
Citation: SONG Gong-Bao, WANG Mei-Li, MIAO Lan-Dong, LI Jian, ZHANG Bao-Shu. Direct Hydrothermal Synthesis and Luminescence Property of Titanate Nanotubes Doped with Eu3+ Ions[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 305-310 . doi: 10.11858/gywlxb.2007.03.015

Eu3+离子掺杂钛酸盐纳米管的直接水热合成与发光性能

doi: 10.11858/gywlxb.2007.03.015
详细信息
    通讯作者:

    宋功保

Direct Hydrothermal Synthesis and Luminescence Property of Titanate Nanotubes Doped with Eu3+ Ions

More Information
    Corresponding author: SONG Gong-Bao
  • 摘要: 采用纳米管制备和离子掺杂同步进行的直接水热合成方法,合成了纯钛酸盐纳米管(TNT)和Eu3+离子掺杂的纳米管(TNT-Eu);并利用X射线衍射(XRD)、透射电子显微镜(TEM)、光致发光谱仪研究了纳米管的形貌特征、物相组成、热稳定性和发光性能。结果显示:这种方法简便易行、稳定性好、产率高。钛酸盐纳米管物相可近似表示为(H,Na)2Ti3O7或(H,Na)2(Ti,Eu)3O7。高温处理对钛酸盐纳米管的结构产生很大的影响,450 ℃下纳米管的层状结构被破坏,晶体结构转化为锐钛矿型的TiO2。TNT-Eu样品的发光性能较强,出现的393.5 nm、593 nm、614 nm的谱带归属于5D0-7F1和5D0-7F2电子的跃迁。

     

  • Dagan G, Tomkiewicz M. Titanium Dioxide Aerogels for Photocatalytic Decontamination of Aquatic Environments [J]. J Phys Chem 1993, 97: 12651-12655.
    Regan B O, Graetzel M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films [J]. Nature, 1991, 353: 737-740.
    Hoyer P. Formation of a Titanium Dioxide Nanotube Array [J]. Langmuir, 1996, 12: 1411-1413.
    Jung J H, Kobayashi H, van Bommel K J C, et al. Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO2 Structures Using an Organogel Template [J]. Chem Mater, 2002, 14: 1445-1447.
    Narayanasamy A, Maroni V A, Siegel R W. Raman-Spectroscopy of Nanophase TiO2 [J]. J Mater Res, 1989, 4: 1246-1250.
    Hoyer P. Semiconductor Nanotube Formation by a Two-Step Template Process [J]. Adv Mater, 1996, 8: 857-859.
    Lakshmi B B, Patrissi C J, Martin C R. Sol-Gel Template Synthesis of Semiconductor Oxide Micro- and Nanostructures [J]. Chem Mater, 1997, 9: 2544-2550.
    Michailowski A, AlMawlawi D, Cheng G S, et al. Highly Regular Anatase Nanotubule Arrays Fabricated in Porous Anodic Templates [J]. Chem Phys Lett, 2001, 349: 1-5.
    Kobayashi S, Hanabusa K, Hamasaki N, et al. Preparation of TiO2 Hollow-Fibers Using Supramolecular Assemblies [J]. Chem Mater, 2000, 12: 1523-1525.
    Hong J, Sun J Zh, Cao J, et al. Control of Microscopic Morphology and Structure of One Dimensional Titanium Dioxide Nanomaterials [J]. Chinese Journal of Materials Research, 2004, 18: 6-10. (in Chinese)
    洪剑, 孙景志, 曹健, 等. 一维TiO2纳米材料的微观形态与结构的控制 [J]. 材料研究学报, 2004, 18: 6-10.
    Imai H, Takei Y, Shimizu K, et al. Direct Preparation of Anatase TiO2 Nanotubes in Porous Alumina [J]. J Mater Chem, 1999, 9: 2971-2972.
    Kasuga T, Hiramatsu M, Hoson A. Formation of Titanium Oxide Nanotube [J]. Langmuir, 1998, 14: 3160-3163.
    Du G H, Chen Q, Che R C, et al. Preparation and Structure Analysis of Titanium Oxide Nanotubes [J]. Appl Phys Lett, 2001, 79: 3702-3704.
    Kasuga T, Hiramatsu M, Hoson A, et al. Titania Nanotubes Prepared by Chemical Processing [J]. Adv Mater, 1999, 11: 1307-1311.
    Yao B D, Chan Y F, Zhang X Y, et al. Formation Mechanism of TiO2 Nanotubes [J]. Appl Phys Lett, 2003, 82(2): 281-283.
    Yuan Z Y, Su B L. Titanium Oxide Nanotubes, Nanofibers and Nanowires [J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2004, 241: 173-183.
    Yoshida R, Suzuki Y, Yoshikawa S. Effects of Synthetic Conditions and Heat-Treatment on the Structure of Partially Ion-Exchanged Titanate Nanotubes [J]. Mater Chem Phys, 2005, 91: 409-416.
    Suzuki Y, Pavasupree S, Yoshikawa S, et al. Natural Rutile-Derived Titanate Nanofibers Prepared by Direct Hydrothermal Processing [J]. J Mater Res, 2005, 20(4): 1063-1070.
    Bavykin D V, Parmon V N, Lapkina A A, et al. The Effect of Hydrothermal Conditions on the Mesoporous Structure of TiO2 Nanotubes [J]. J Mater Chem, 2004, 14: 3370-3377.
    Zhu Y C, Li H L, Koltypin Y, et al. Sonochemical Synthesis of Titania Whiskers and Nanotubes [J]. Chem Commun, 2001, 24: 2616-2617.
    Zhang S, Peng L M, Chen Q, et al. Formation Mechanism of H2Ti3O7 Nanotubes [J]. Phys Rev Lett, 2003, 91(25): 256103.
    Chen S Y, Ting C C, Hsieh W F. Comparison of Visible Fluorescence Properties between Sol-Gel Derived Er3+-Yb3+ and Er3+-Y3+ Co-Doped TiO2 Films [J]. Thin Solid Films, 2003, 434(1-2): 171-177.
    Frindell K L, Bartl M H, Robinson M R, et al. Visible and Near-IR Luminescence via Energy Transfer in Rare Earth Doped Mesoporous Titania Thin Films with Nanocrystalline Walls [J]. J Solid State Chem, 2003, 172(1): 81-88.
    Iakovlev S, Solterbeck C H, Es-Souni M, et al. Rare-Earth Ions Doping Effects on the Optical Properties of Sol-Gel Fabricated PbTiO3 Thin Films [J]. Thin Solid Films, 2004, 446(1): 50-53.
    Sun X M, Li Y D. Synthesis and Characterization of Ion-Exchangeable Titanate Nanotubes [J]. Chemistry-A European Journal, 2003, 9(10): 2229-2238.
    Conde-Gallardo A, Garca-Rocha M, Palomino-Merino R, et al. Photoluminescence Properties of Tb3+ and Eu3+ Ions Hosted in TiO2 Matrix [J]. Appl Surf Sci, 2003, 212-213: 583-588.
  • 加载中
计量
  • 文章访问数:  7754
  • HTML全文浏览量:  301
  • PDF下载量:  760
出版历程
  • 收稿日期:  2006-04-30
  • 修回日期:  2006-10-08
  • 发布日期:  2007-09-05

目录

    /

    返回文章
    返回