纳米陶瓷粉末在爆炸压实过程中的破碎行为研究

张越举 李晓杰 闫鸿浩 曲艳东 陶玉雄

张越举, 李晓杰, 闫鸿浩, 曲艳东, 陶玉雄. 纳米陶瓷粉末在爆炸压实过程中的破碎行为研究[J]. 高压物理学报, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004
引用本文: 张越举, 李晓杰, 闫鸿浩, 曲艳东, 陶玉雄. 纳米陶瓷粉末在爆炸压实过程中的破碎行为研究[J]. 高压物理学报, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004
ZHANG Yue-Ju, LI Xiao-Jie, YAN Hong-Hao, QU Yan-Dong, TAO Yu-Xiong. Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004
Citation: ZHANG Yue-Ju, LI Xiao-Jie, YAN Hong-Hao, QU Yan-Dong, TAO Yu-Xiong. Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process[J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 136-144 . doi: 10.11858/gywlxb.2007.02.004

纳米陶瓷粉末在爆炸压实过程中的破碎行为研究

doi: 10.11858/gywlxb.2007.02.004
详细信息
    通讯作者:

    张越举

Research of Fragmentation of Nano-Ceramic Powders during Explosive Consolidation Process

More Information
    Corresponding author: ZHANG Yue-Ju
  • 摘要: 在爆炸压实过程中,纳米颗粒所受冲击载荷发生显著变化的时间远远大于应力波传过颗粒特征长度所用时间;同时,陶瓷颗粒在爆炸冲击过程中主要表现为脆性。基于以上两个事实提出了弹性假设,推导了颗粒在压实过程中的受力状态。回顾了判断脆性材料破坏的三个准则,即Hugonoit弹性极限、动态屈服强度和理论剪切强度,并从这三种判据的交集值出发来判断爆炸压实过程中陶瓷颗粒是否有发生破碎的可能。通过具体计算得出颗粒内存在两个最大剪应力的位置:一个位置发生在距颗粒接触面0.5 nm范围以内,此处剪应力最大;另一个位置发生在距接触面较远处。这一结果为解释陶瓷粉末颗粒在爆炸压实过程中存在塑性行为和破碎行为提供了理论依据。

     

  • Djurado E, Boulc'h F, Pivkina A, et al. Cold Isostatic and Explosiveisodynamic Compaction of Y-TZP Nanoparticles [J]. Solid State Ionics, 2002, (154-155): 375-380.
    Mamalis A G. Manufacturing of Bulk High-Tc Superconductors [J]. International Journal of Inorganic Material, 2000, 2: 623-633.
    Counihan P J, Crawford A, Thadhani N N. Influence of Dynamic Densification on Nanostructure Formation in Ti5Si3 Intermetallic Alloy and Its Bulk Properties [J]. Material Science and Engneering, 1999, A267: 26-35.
    Shang S S, Hokamoto K, Meyers M. A. Hot Dynamic Consolidation of Hard Ceramics [J]. J Mater Sci, 1992, 27, 5470-5476
    Hokamoto K, Tanaka S, Fujita M, et al. High Temperature Shock Consolidation of Hard Ceramic Powders [J]. Physica, 1997, B239: 1-5.
    Prummer R, Weinor P. Explosive Consolidation of Nanopowders [J]. Interceram, 2002, 51(6): 394-398.
    Zhang D, Wu M S, Feng R. Micromechanical Investigation of Heterogeneous Microplasticity in Ceramics Deformed under High Confining Stresses [J]. Mechanics of Materials, 2005, 37: 95-112.
    Grady D E. Local Inertia Effects Indynamic Fragmentation [J]. J Appl Phys, 1982, 68: 322-325.
    Kipp M E, Grady D E. Dynamic Fracture Growth and Interaction in One Dimension [J]. Physics Mechanics Solids, 1985, 33: 399-415.
    Schwarz R B, Kasiraj P, Vreeland T, et al. A Theory for the Shock-Wave Consolidation of Powders [J]. Acta Metal, 1984, 32(8): 1243-1252.
    Nemat-Nasser S, Deng H. Strain-Rate Effect on Brittle Failure in Compression [J]. Acta Metall Mater, 1994, 42(3): 1013-1024.
    Ravichandran G, Subhash G. A Micromechanical Model for High Strain Rate Behavior of Ceramics [J]. International Journal of Solids Structures, 1995, 32(17/18): 2627-2646.
    Mamais A G, Vottea I N, Manolakos D E. On the Modeling of the Compaction Mechanism of Shock Compacted Powder [J]. Journal of Materials Processing Technology, 2001, 108: 165-178.
    Meyers M A, Bendon D J, Olevsky E A. Shock Consolidation: Microstructurally-Based Analysis and Computational Modeling [J]. Acta Materials, 1999, 47(7): 2089-2108.
    Wang L L. Foundation of Stress Wave [M]. Beijing: National Defence Industry Press, 1985: 1-2. . (in Chinese)
    王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 1-2.
    Grady D E. Shock-Wave Compression of Brittle Solids [J]. Mechanics of Materials, 1998, 29: 181-203.
    Tang W H, Zhang R Q, Hu J B, et al. Approximation Calculation Methods of Shock Temperature [J]. Advances in Mechanics, 1998, 28(4): 479-487. (in Chinese)
    汤文辉, 张若棋, 胡金彪, 等. 冲击温度的近似计算 [J]. 力学进展, 1998, 28(4): 479-487.
    Kim B C, Lee J H, Kim J J, et al. Densification of Nanocrystalline ITO Powders in Fast Firing: Effect of Specimen Mass and Sintering Atmosphere [J]. Materials Reserch Bulletin, 2005, 40: 395-404.
    Xu Z L. Elastic Mechanics(3rd ed) [M]. Beijing: Higher Education Press, 1990: 283-309. (in Chinese)
    徐芝纶. 弹性力学(上)(第3版) [M]. 北京: 高等教育出版社, 1990: 283-309.
    Geen D J. Introduction of Mechanic Property of Ceramic Material [M]. Translated by Gong J H. Beijing: Qinghua University Press, 2003: 21. (in Chinese)
    Geen D J. 陶瓷材料力学性能导论 [M]. 龚江宏译. 北京: 清华大学出版社, 2003: 21.
    Xi T G. Thermo-Physics Character of Inorganic Materia [M]. Shang hai: Shanghai Science Technology Press, 1981: 33-34, 214. (in Chinese)
    奚同庚. 无机材料热物性学 [M]. 上海: 上海科学技术出版社, 1981: 33-34, 214.
    Wang L S. Special Ceramic(2nd ed) [M]. Changsha: Centrol South University Press, 2005: 72-74. (in Chinese)
    王零森. 特种陶瓷(第2版) [M]. 长沙: 中南大学出版社, 2005: 72-74.
    Li D H, Wang W. A Study of the Equation of State of Alumina Ceramics [J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 226-231. (in Chinese)
    李大红, 王悟. 陶瓷物态方程实验研究 [J]. 高压物理学报, 1993, 7(3): 226-231.
    Shih C J, Meyers M A, Nesterenko V F, et al. Damage Evolution in Dynamic Deformation of Silican Carbide [J]. Acta Mater, 2000, 48: 2399-2420.
    Jiang B, Weng G J. A Theory of Compressive Yield Strength of Nano-Grained Ceramics [J]. International Journal of Plasticy, 2004, 20: 2007-2026.
    Karch J, Birringer R, Gleiter H. Ceramics Ductile at Llow Temperature [J]. Nature, 1987, 330: 556-558.
    Kirchheim R, Mutschele T, Kieninger W. Hydrogen in Amorphous and Nanocrystalline Metals [J]. Material Science and Engneering, 1988, 99: 457-462.
  • 加载中
计量
  • 文章访问数:  7394
  • HTML全文浏览量:  336
  • PDF下载量:  710
出版历程
  • 收稿日期:  2006-07-16
  • 修回日期:  2006-10-13
  • 发布日期:  2007-06-05

目录

    /

    返回文章
    返回