顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义

杨金科 龚自正 邓力维 张莉 费英伟

杨金科, 龚自正, 邓力维, 张莉, 费英伟. 顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义[J]. 高压物理学报, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008
引用本文: 杨金科, 龚自正, 邓力维, 张莉, 费英伟. 顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义[J]. 高压物理学报, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008
YANG Jin-Ke, GONG Zi-Zheng, DENG Li-Wei, ZHANG Li, FEI Ying-Wei. Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008
Citation: YANG Jin-Ke, GONG Zi-Zheng, DENG Li-Wei, ZHANG Li, FEI Ying-Wei. Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 45-54 . doi: 10.11858/gywlxb.2007.01.008

顽火辉石(Mg0.92,Fe0.08)SiO3的冲击相变和高压状态方程及其地球物理意义

doi: 10.11858/gywlxb.2007.01.008
详细信息
    通讯作者:

    龚自正

Equation of State and Phase Transition of (Mg0.92, Fe0.08) SiO3 Enstatite under Shock Compression and Its Geophysical Implications

More Information
    Corresponding author: GONG Zi-Zheng
  • 摘要: 用阻抗匹配法和电探针技术在48~140 GPa冲击压力范围内对化学组分为(Mg0.92, Fe0.08)SiO3、初始密度为3.06 g/cm3的天然顽火辉石进行了冲击压缩实验。根据本工作13发实验数据,结合McQueen等人的数据可以看出,(Mg0.92, Fe0.08)SiO3顽火辉石在冲击压缩过程中,大约经历三个明显区域:低压相区,压力范围为0~40 GPa;混合相区,压力范围为40~67 GPa;高压相区,压力范围为68~140 GPa。在低压相区,D-u关系已由McQueen给出;而在高压相区(68~140 GPa),可由本实验数据得到。由叠加原理计算得到的混合物(Mg0.92, Fe0.08)O(Mw)+SiO2(St)的D-u关系及p-关系曲线明显偏离了实验数据的拟合曲线,从而排除了在高达140 GPa冲击压力下,钙钛矿结构的(Mg0.92, Fe0.08)SiO3发生向氧化物化学分解相变的可能性。对高压相区的实验数据进行拟合,可以得到(Mg0.92, Fe0.08)SiO3钙钛矿的Grneisen参数。通过三阶Birch-Murnaghan有限应变状态方程,由冲击波实验数据得到了零压等熵体积模量K0S=259.6(9) GPa及其对压力的一阶偏导数K0S=4.20(5),其0=4.19 g/cm3。(Mg0.92, Fe0.08)SiO3钙钛矿冲击压缩下的密度数据与PREM密度剖面吻合很好,支持钙钛矿为主要成分的下地幔模型。

     

  • Knittle E, Jeanloz R. Synthesis and Equation of State of (Mg, Fe)SiO3 Perovskite to over 100 Gigapascals [J]. Science, 1987, 235: 668-670.
    Mao H K, Hemley R J, Fei Y, et al. Effect of Pressure, Temperature, and Composition on Lattice Parameters and Density of (Fe, Mg)SiO3-Perovskites to 30 GPa [J]. J Geophys Res, 1991, 96: 8069-8079.
    Wang Y, Weidner D J, Liebermann R C, et al. p-V-T Equation of State of (Mg, Fe)SiO3 Perovskite: Constraints on Composition of the Lower Mantle [J]. Phys Earth Planet Inter, 1994, 83: 13-40.
    Funamori N, Yagi T, Utsumi W, et al. Thermoelastic Properties of MgSiO3 Perovskite Determined by in situ X-Ray Observations up to 30 GPa and 2000 K [J]. J Geophys Res, 1996, 101: 8257-8269.
    Fiquet G, Andrault D, Dewaele A, et al. p-V-T Equation of State of MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1998, 105: 21-31.
    Fiquet G, Dewaele A, Andrault D, et al. Thermolastic Properties and Crystal Structure of MgSiO3 Perovskite at Lower Mantle Pressure and Temperature Conditions [J]. Geophys Res Lett, 2000, 27(1): 21-24.
    Saxena S K, Dubrovinsky L S, Tutti F, et al. Equation of State of MgSiO3 with the Perovskite Structure Based on Experimental Measurement [J]. Am Mineral, 1999, 84: 226-232.
    Zhang J, Weidner D J. Thermal Equation of State of Aluminium-Enriched Silicate Perovskite [J]. Science, 1999, 284: 782-784.
    Andrault D, Bolfan-Casanova N, Guignot N. Equation of State of Lower Mantle (Al, Fe)-MgSiO3 Perovskite [J]. Earth Planet Sci Lett, 2001, 193: 501-508.
    Meade C, Mao H K, Hu J Z. High-Temperature Phase Transition and Dissociation of (Mg, Fe)SiO3 Perovskite at Lower Mantle Pressure [J]. Science, 1995, 268: 1743-1745.
    Saxena S K, Dubrovinsky L S, Lazor P, et al. Stability of Perovskite MgSiO3 in the Earth's Mantle [J]. Science, 1996, 274: 1357-1359.
    Serghiou G, Zerr A, Boehler R. (Mg, Fe)SiO3-Perovskite Stability under Lower Mantle Conditions [J]. Science, 1998, 280: 2093-2095.
    Shim S H, Duffy T J, Shen G Y. Stability and Structure of MgSiO3 Perovskite to 2300-Kilometer Depth in the Earth's Mantle [J]. Science, 2001, 293: 2437-2440.
    Trunin R F, Gon'shakova V I, Simakov G V, et al. A Study of Rock under the High Pressures and Temperatures Created by Shock Compression [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1965, 8: 579-586.
    McQueen R G, Marsh S P, Fritz J N. Hugoniot Equation of State of Twelve Rocks [J]. J Geophys Res, 1967, 72(20), 4999-5036.
    Simakov G V, Trunin R F. On the Existance of the Overdense Perovskite Structures in Magnesium Silicates under Conditions of High Pressure [J]. Izv Acad Sci USSR Phys Solid Earth, Engl Trans, 1973, 9: 603-604.
    Jeanloz R, Ahrens T J. Pyroxenes and Olivines: Structural Implications of Shock Wave Data for High-Pressure Phases [A]//Manghnani M H, Akimoto S. High-Pressure Research: Applications in Geophysics [C]. Washington D C: American Geophysical Union, 1977: 439-461.
    Watt J P, Ahrens T J. Shock Wave Equation of State of Enstatite [J]. J Geophys Res, 1986, 91(B7): 7495-7503.
    Huo H, Gong Z Zh, Jing F Q. High Pressure Phase of Enstatite and Its Geophysical Implication [J]. Chinese Journal of High Pressure Physics, 1999, 12(2): 132-138. (in Chinese)
    霍卉, 龚自正, 经福谦. 高压下顽火辉石的相态及其在地球物理中的应用 [J]. 高压物理学报, 1999, 12 (2): 132-138.
    Jing F Q. Introduction to Experiment Equation of State (2nd ed) [M]. Beijing: Science Press, 1999: 328-340. (in Chinese)
    经福谦. 实验物态方程导引 (第2版) [M]. 北京: 科学出版社, 1999: 328-340.
    Mitchell A C, Nellis W J. Shock Compression of Aluminum, Copper, and Tantalum [J]. J Appl Phys, 1981, 52: 3363-3374.
    Miller G H, Stolper E M, Ahrens T J. Equation of State of a Molten Komatiite: 1. Shock Wave Compression to 36 GPa [J]. J Geophys Res, 1991, 96(B7): 11, 831-11, 848.
    Akins J A, Luo S-N, Asimow P D, et al. , Shock-Induced Melting of MgSiO3 Perovskite and Implications for Melts in Earth's Lowermost Mantle [J]. Geophys Res Lett, 2004, 31: L14612.
    Luo S N, Mosenfelder J L, Asimov P D, et al. Direct Shock Wave Loading of Stishovite to 235 GPa: Implications for Perovskite Stability Relative to an Oxide Assemblage at Lower Mantle Conditions [J]. Geophys Res Lett, 2002, 29(14): 1691-1694.
    McQueen R G. Shock Waves in Condensed Media: Their Properties and the Equation of State of Materials Derived from Them [A]//Eliezer S, Ricci R A. High-Pressure Equations of State: Theory and Applications [C]. Amsterdam: Elsevier Science Publishing Company, 1991: 101-216.
    Fei Y. Effects of Temperature and Composition on the Bulk Modulus of (Mg, Fe)O [J]. Am Mineral, 1999, 84: 272-276.
    Gong Z Zh, Xie H S, Jing F Q, et al. High-Pressure Sound Velocity of Perovskite-Enstatite and Possible Composition of Earth's Lower Mantle [J]. Chin Phys Lett, 1999, 16(9): 695-697.
    Badro J, Rueff J P, Vanko G. Electronic Transitions in Perovskite: Possible Noconvecting Layers in the Lower Mantle [J], Science, 2004, 305: 383-386.
    Anderson O L. Thermoelastic Properties of MgSiO3 Perovskite Using Debye Approach [J]. Am Mineral, 1998, 83: 23-35.
    Anderson O L, Masuda K, Isaak D G. Limits on the Value of T and for MgSiO3 Perovskite [J]. Phys Earth Planet Inter, 1996, 98: 31-46.
    Marton F C, Ita J, Cohen R E. Pressure-Volue-Temperature Equation of State of MgSiO3 Perovskite from Molecular Dynamics and Constraints on Lower Mantle Composition [J]. J Geophys Res, 2001, 106(B5): 8615-8627.
    Heinz D L, Jeanloz R. The Equation of State of the Gold Calibration Standard [J]. J Appl Phys, 1984, 55: 885-893.
    Ahrens T J, Jeanloz R. Pyrite: Shock Compression, Isentropic Release, and Composition of the Earth's Core [J]. J Geophys Res, 1987, 92(B10): 10363-10375.
    Jeanloz R. Shock Wave Equation of State and Finite Strain Theory [J]. J Geophys Res, 1989, 94(B5): 5873-5886.
    Tyburczy, J A, Duffy T S, Ahrens T J, et al. Shock Wave Equation of State of Serpentine to 150 GPa: Implications for the Occurrence of Water in the Earth's Lower Mantle [J]. J Geophys Res, 1991, 96(B11): 18011-18027.
    Debye P. Zur Theories Der Spezifischen Warmen [J]. Ann Phys, 1912, 39: 789-839.
    Gruneisen E. The State of a Solid Body [J]. Hanb Phys, 1926, 10: 1-52.
    Anderson O L. Equations of States of Solids for Geophysics and Ceramic Science [M]. New York: Oxford University Press, 1995.
    Stacey F D. A Thermal Model of the Earth [J]. Phys Earth Planet Inter, 1977, 15: 341-348.
    Brown J M, Shankland T J. Thermodynamic Parameters in the Earth as Determined from Seismic Profiles [J]. Geophys J R Astron Soc, 1981, 66: 579-596.
    Jeanloz R, Morris S. Temperature Distribution in the Crust and Mantle [J]. Ann Rev Erath Planet Sci, 1986, 14: 377-415.
  • 加载中
计量
  • 文章访问数:  7947
  • HTML全文浏览量:  447
  • PDF下载量:  846
出版历程
  • 收稿日期:  2005-10-12
  • 修回日期:  2006-01-12
  • 发布日期:  2007-03-05

目录

    /

    返回文章
    返回