冲击加载下20钢中弹性前驱波衰减与应力松弛行为实验研究

王永刚 贺红亮

王永刚, 贺红亮. 冲击加载下20钢中弹性前驱波衰减与应力松弛行为实验研究[J]. 高压物理学报, 2007, 21(1): 35-39 . doi: 10.11858/gywlxb.2007.01.006
引用本文: 王永刚, 贺红亮. 冲击加载下20钢中弹性前驱波衰减与应力松弛行为实验研究[J]. 高压物理学报, 2007, 21(1): 35-39 . doi: 10.11858/gywlxb.2007.01.006
WANG Yong-Gang, HE Hong-Liang. Investigation of Precursor Decay and Stress Relaxation in Shock-Compressed 20 Steel[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 35-39 . doi: 10.11858/gywlxb.2007.01.006
Citation: WANG Yong-Gang, HE Hong-Liang. Investigation of Precursor Decay and Stress Relaxation in Shock-Compressed 20 Steel[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 35-39 . doi: 10.11858/gywlxb.2007.01.006

冲击加载下20钢中弹性前驱波衰减与应力松弛行为实验研究

doi: 10.11858/gywlxb.2007.01.006
详细信息
    通讯作者:

    贺红亮

Investigation of Precursor Decay and Stress Relaxation in Shock-Compressed 20 Steel

More Information
    Corresponding author: HE Hong-Liang
  • 摘要: 通过改变样品厚度,对平面冲击加载下20钢的弹性前驱波的波幅衰减和应力松弛进行了实验研究。采用激光速度干涉测速仪(VISAR)实测了样品后自由面速度历史,采样频率达到1 ns,保证了实验结果的准确性。实验结果显示:Hugoniot弹性极限随着传播距离呈指数衰减,在所研究的样品厚度范围内,Hugoniot弹性极限减小了44%;应力松弛行为和弹性前驱波的上升沿时间也依赖于传播距离;冲击加载的强度对材料动态屈服行为的影响很小。

     

  • Steinberg D J, Cochran S G, Guinan M W. A Constitutive Model for Metals Applicable at High-Strain Rate [J]. J Appl Phys, 1980, 51: 1498-1504.
    Zerilli F J, Armstrong R W. Dislocation-Mechanics-Based Constitutive Relations for Material Dynamic Calculations [J]. J Appl Phys, 1987, 61: 1816-1826.
    Jones O E, Mote J D. Shock-Induced Dynamic Yielding in Copper Single Crystals [J]. J Appl Phys, 1969, 40: 4920-4928.
    Asay J R, Fowles G R, Gupta Y M. Determination of Material Relaxation Properties from Measurements on Decaying Elastic Shock Fronts [J]. J Appl Phys, 1972, 43: 744-746.
    Gupta Y M, Duvall G E, Fowles G R. Dislocation Mechanisms for Stress Relaxation in Shocked LiF [J]. J Appl Phys, 1975, 46: 532-546.
    Jones O E, Neilson F W, Benedick W B. Dynamic Yield Behavior of Explosively Loaded Metals Determined by a Quartz Transducer Technique [J]. J Appl Phys, 1962, 33: 3224-3232.
    de Resseguier T, Hallouin M. Stress Relaxation and Precursor Decay in Laser Shock-Loaded Iron [J]. J Appl Phys, 1998, 84: 1932-1938.
    Marom H, Sherman D, Rosenberg Z. Decay of Elastic Waves in Alumina [J]. J Appl Phys, 2000, 88: 5666-5670.
    Burke J J, Weiss V. Shock Wave and the Mechanical Properties of Solid [M]. New York: Syracuse University Press, 1970: 23.
    Barker L M, Hollenback R E. Laser Interferometer for Measuring High Velocities of Any Reflecting Surface [J]. J Appl Phys, 1972, 43: 4669-4675.
    Taylor J W. Dislocation Dynamic and Dynamic Yielding [J]. J Appl Phys, 1965, 36: 3146-3150.
    Johnston W G. Yield Points and Delay Times in Single Crystals [J]. J Appl Phys, 1962, 33: 2716-2730.
    Johnson J N, Rhode R W. Dynamic Deformation Twinning in Shock-Loaded Iron [J]. J Appl Phys, 1971, 42: 4171-4182.
    Kadau K, Germann T C, Lomdahl P S, et al. Atomistic Simulation of Shock-Induced Transformations and Their Orientation Dependence in bcc Fe Single Crystals [J]. Phys Rev B, 2005, 72: 064120.
    Cottrell A H. Dislocations and Plastic Flow in Crystals [M]. London: Oxford University Press, 1953: 133.
    Meryers M A. A Model for Elastic Precursor Waves in the Shock Loading of Polycrystalline Metals [J]. Mater Sci Eng, 1977, 30: 99-111.
  • 加载中
计量
  • 文章访问数:  7903
  • HTML全文浏览量:  354
  • PDF下载量:  903
出版历程
  • 收稿日期:  2006-02-15
  • 修回日期:  2006-04-13
  • 发布日期:  2007-03-05

目录

    /

    返回文章
    返回