高温高密度氢(氘)的物态方程离解效应研究

田春玲 经福谦 顾云军 蔡灵仓 刘福生

田春玲, 经福谦, 顾云军, 蔡灵仓, 刘福生. 高温高密度氢(氘)的物态方程离解效应研究[J]. 高压物理学报, 2007, 21(1): 8-14 . doi: 10.11858/gywlxb.2007.01.002
引用本文: 田春玲, 经福谦, 顾云军, 蔡灵仓, 刘福生. 高温高密度氢(氘)的物态方程离解效应研究[J]. 高压物理学报, 2007, 21(1): 8-14 . doi: 10.11858/gywlxb.2007.01.002
TIAN Chun-Ling, JING Fu-Qian, GU Yun-Jun, CAI Ling-Cang, LIU Fu-Sheng. Equations of State for Fluid Hydrogen and Deuterium: Dissociation Effects Studies[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 8-14 . doi: 10.11858/gywlxb.2007.01.002
Citation: TIAN Chun-Ling, JING Fu-Qian, GU Yun-Jun, CAI Ling-Cang, LIU Fu-Sheng. Equations of State for Fluid Hydrogen and Deuterium: Dissociation Effects Studies[J]. Chinese Journal of High Pressure Physics, 2007, 21(1): 8-14 . doi: 10.11858/gywlxb.2007.01.002

高温高密度氢(氘)的物态方程离解效应研究

doi: 10.11858/gywlxb.2007.01.002
详细信息
    通讯作者:

    田春玲

Equations of State for Fluid Hydrogen and Deuterium: Dissociation Effects Studies

More Information
    Corresponding author: TIAN Chun-Ling
  • 摘要: 高温高压下流体氢将发生离解化学反应,形成具有相互作用的氢分子和氢原子混合体系,此时粒子间的相互作用复杂。利用单组分流体近似的范德瓦尔斯混合模型,将混合物粒子间的相互作用等效为单组分粒子间相互作用,从而简化了对体系的统计热力学处理;并由自由能函数极小化确定化学平衡时各组分含量、体系的内能、压强。研究了温度在10 000 K以下、密度在0.6 g/cm3以下(相应摩尔体积大于3.3 cm3/mol)区间的热致离解和压致离解现象对流体氢(氘)状态方程的影响。所得结果与双组分流体变分理论计算以及第一原理的分子动力学模拟、蒙特卡罗模拟结果以及二级轻气炮实验数据进行了比较,它们之间的一致性表明:用单组分流体近似的范德瓦尔斯混合模型处理氢(氘)分子的离解区域的物态方程是成功的。

     

  • Guillot T. Interiors of Giant Planet Inside and Outside the Solar System [J]. Science, 1999, 286(1): 72.
    Lindl J. Development of the Indirect-Drive Approach to Inertial Confinement Fusion and the Target Physics Basis Ignition Gain [J]. Phys Plasmas, 1995, 2(11): 3933.
    Militze B, Ceperley D M. Path Integral Monte Carlo Simulation of the Low Density Hydrogen Plasma [J]. Phys Rev E, 2001, 63(6): 066404.
    Collin L A, Bickhanm S R, Kress J D, et al. Dynamical and Optical Properties of Warm Dense Hydrogen [J]. Phys Rev B, 2001, 63(18): 184110.
    Leonosky T J, Kress J D, Collin L A, et al. Simulations of Fluid Hydrogen: Comparison of a Dissociation Model with Tight-Binding Molecular Dynamics [J]. Phys Rev E, 1999, 60(2): 1665.
    Ross M, Ree F H, Young D A. The Equation of State of Molecular Hydrogen at Very High Density [J]. J Chem Phys, 1983, 79(3): 1487.
    Saumon D, Chabrier G. Fluid Hydrogen at High Density: Pressure Ionization [J]. Phys Rev A, 1992, 46(4): 2084.
    Saumon D, Chabrier G. Fluid Hydrogen at High Density: Pressure Dissociation [J]. Phys Rev A, 1992, 44(8): 5122.
    Juranek H, Redmer R. Fluid Variational Theory for Pressure Dissociation in Dense Hydrogen: Multicomponent Reference System and Nonadditivity Effects [J]. J Chem Phys, 2002, 117(4): 1768.
    Juranek H, Redmer R. Self-Consistent Fluid Variational Theory for Pressure Dissociation in Dense Hydrogen [J]. J Chem Phys, 2000, 112(8): 3780.
    Chen Q F, Cai L C, Chen D Q, et al. Pressure Dissociation of Dense Hydrogen [J]. Chin Phys, 2005, 14(10): 2077.
    Chen Q F, Cai L C, Jing F Q, et al. Theoretical Calculation of the Hugoniot Curves for Liquid Deuterium and Hydrogen [J]. Acta Phys Sin, 1999, 48(3): 485. (in Chinese)
    陈其峰, 蔡灵仓, 经福谦, 等. 液氢、液氘冲击压缩特性的理论计算 [J]. 物理学报, 1999, 48(3): 485.
    Ree F H. Simple Mixing Rule for Mixtures with Exp-6 Interactions [J]. J Chem Phys, 1983, 78(1): 409.
    Ree F H. A Statistical Mechanical Theory of Chemically Reacting Multiphase Mixtures: Application the Detonation Properties of PETN 1984 [J]. J Chem Phys, 1984, 81(3): 1251.
    van Thiel M, Ree F H. Accurate High-Pressure and High-Temperature Effective Pair Potentials for the Systems N2-N and O2-O [J]. J Chem Phys, 1996, 104(13): 5019.
    Beule D, Ebeling W, Forster A, et al. Equation of State for Hydrogen Below 10000 K: From the Fluid to the Plasma [J]. Phys Rev B, 1999, 59(22): 14177.
    Ree F H. Shock Wave in Condensed Matter-1987 [M]. New York: Elsevier, 1988: 125.
    Bezkrovniy V, Schlanges M, Kremp D, et al. Reaction Ensemble Monte Carlo Technique and Hypernetted Chain Approximation Study of Dense Hydrogen [J]. Phys Rev E, 2004, 69(6): 061204.
    Ross M. A High-Density Fluid-Perturbation Theory Based on an Inverse 12th-Power Hard-Sphere Reference System [J]. J Chem Phys, 1979, 71(4): 1567
    Nellis W J, Mitchell A C, van Thiel M, et al. Equation-of-State Data for Molecular Hydrogen and Deuterium at Shock Pressures in the Range 2~76 GPa(20~760 kbar) [J]. J Chem Phys 1983, 79(3): 1480.
    Holmes N C, Ross M, Nellis W J. Temperature Measurements and Dissociation of Shock-Compressed Liquid Deuterium and Hydrogen [J]. Phys Rev B, 1994, 52(22): 15835.
    Collins G W, Celliers P M, da Silva L B. Temperature Measurements of Shock Compressed Liquid Deuterium up to 230 GPa [J]. Phys Rev Lett, 2001, 87(16): 165504.
    Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, Reverberating Wave, and Mechanical Reshock Measurements of Liquid Deuterium to 400 GPa Using Plate Impact Techniques [J]. Phys Rev B, 2004, 69(14): 144209.
    Bonev S T, Militzer B, Galli G. Ab Initio Simulations of Dense Liquid Deuterium: Comparison with Gas-Gun Shock-Wave Experiments [J]. Phys Rev B, 2004, 69(1): 014101.
  • 加载中
计量
  • 文章访问数:  7878
  • HTML全文浏览量:  357
  • PDF下载量:  821
出版历程
  • 收稿日期:  2006-01-06
  • 修回日期:  2006-03-17
  • 发布日期:  2007-03-05

目录

    /

    返回文章
    返回