地表柯石英的实验室模拟合成及其形成机制的研究

刘曙娥 许大鹏 刘晓梅 苏文辉 薜燕峰 孙敬姝

刘曙娥, 许大鹏, 刘晓梅, 苏文辉, 薜燕峰, 孙敬姝. 地表柯石英的实验室模拟合成及其形成机制的研究[J]. 高压物理学报, 2006, 20(2): 163-171 . doi: 10.11858/gywlxb.2006.02.009
引用本文: 刘曙娥, 许大鹏, 刘晓梅, 苏文辉, 薜燕峰, 孙敬姝. 地表柯石英的实验室模拟合成及其形成机制的研究[J]. 高压物理学报, 2006, 20(2): 163-171 . doi: 10.11858/gywlxb.2006.02.009
LIU Shu-E, XU Da-Peng, LIU Xiao-Mei, SU Wen-Hui, XUE Yan-Feng, SUN Jing-Shu. Modelling Synthesis in Laboratory of Coesite in the Earth's Crust and Its Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 163-171 . doi: 10.11858/gywlxb.2006.02.009
Citation: LIU Shu-E, XU Da-Peng, LIU Xiao-Mei, SU Wen-Hui, XUE Yan-Feng, SUN Jing-Shu. Modelling Synthesis in Laboratory of Coesite in the Earth's Crust and Its Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 163-171 . doi: 10.11858/gywlxb.2006.02.009

地表柯石英的实验室模拟合成及其形成机制的研究

doi: 10.11858/gywlxb.2006.02.009
详细信息
    通讯作者:

    苏文辉

Modelling Synthesis in Laboratory of Coesite in the Earth's Crust and Its Formation Mechanism

More Information
    Corresponding author: SU Wen-Hui
  • 摘要: 静高压合成柯石英的压力和温度的实验条件是提出地球板块折返假说的基础,然而,静高压没有反映局部碰撞和剪切应力的因素。考虑这些因素,提出了一种利用高能机械球磨与静高压相结合的、可以模拟地表柯石英合成的实验室研究方法,发现了一种由机械碰撞引起的-石英中间亚稳相,其静高压致晶化成柯石英的条件为3.0 GPa、923 K、1.0 min。如果沿袭传统的板块折返假设,对应此条件的板块俯冲深度应比Jr.L.Coes的结果浅20 km。发现了10 s量级的柯石英的短时间快速合成现象。由本方法合成的柯石英的Raman峰,涵盖了以前得到的天然柯石英和人工合成的柯石英的Raman信息。阐明了由本方法合成的柯石英在地质科学上的涵义,并提出了另一种可能的地表柯石英形成机制。

     

  • Coes L Jr. A New Dense Crystalline Silica [J]. Science, 1953, 118: 131-132.
    Hsu K J. Exhumation of High-Pressure Metamorphic Rocks [J]. Geology, 1991, 19: 107-110.
    Okay A I, Sengor A M C. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China [J]. Geology, 1992, 20: 411-414.
    Liou J G R. High-Pressure Minerals from Deeply Subducted Metamorphic Rocks [A]. //Hemley R J. Reviews in Mineralogy (Vol 37). Ultrahigh-Pressure Mineralogy: Physics Chemistry of the Earth's Deep Interior [C]. Washington D C, 1998: 33-85.
    Coleman R G, Wang X. Ultrahigh Pressure Metamorphism [M]. Cambridge: Cambridge Univ Press, 1995.
    Chopin C. Coesite and Pure Pyrope in High-Grad Blueschists of the Western Alps-A First Record and Some Consequences [J]. Contrib Mineral Petrol, 1984, 86: 107-118.
    Smith D C. Coesite in Clinopyroxene in the Caledonides and Its Implications for Geodynamics [J]. Nature, 1984, 310: 641-644.
    Caby R. Precambrian Coesite from North Mali-First Record and Implications for Plate-Tectonics in the Trans-Saxaran Segment of the Pan-African Belt [J]. Eur J Mineral, 1994, 6: 235-244.
    Wang X, Lion J G, Mao H K. Coesite-Bearing Eclogite from the Dabie Mountains in Central China [J]. Geology, 1989, 17: 1085-1088.
    Liou J G, Zhang R Y. Occurrences of Intergranular Coesite in Ultra-High-Pressure Rocks from the Sulu Region, Eastern China: Implications for Lack of Fluid During Exhumation [J]. Amer Mineral, 1996, 81: 1217-1221.
    O'Brien P J, Law R, Trelar P J. The Subduction and Exhumation History of the Indian Plate During Himalayan Collision: Evidence from Rare Eclogites [R]. Bayerisches Forschungsinstitut fr Experimentlle Geochemie und Geophysik Universitat Bayeuth Annual Report, 1998: 75-76.
    Mirwald P W, Massonne H J. The Low-High Quartz and Quartz-Coesite Transition to 40 kbar between 600 ℃ and 1600 ℃ and Some Reconnaissance Data on the Effect of NaAlO2 Component on the Low Quartz-Coesite Transition [J]. J Geophys Res, 1980, 85: 6983-6990.
    Bohlen S R, Boettcher A L. The Quartz Coesite Transformation: A Precise Determination and the Effects of Other Components [J]. J Geophys Res, 1982, 87(B8): 7073-7078.
    Bose K, Ganguly J. Quartz-Coesite Transition Revisited: Reversed Experimental Determination at 500~1000 ℃ and Retrieved Thermochemical Properties [J]. Am Mineral, 1995, 80: 231-238.
    Renner J, Zerbian A, Stockhert B. Microstructures of Synthetic Polycrystalline Coesite Aggregates. The Effect of Pressure, Temperature, and Time [J]. Lithos, 1997, 41: 169-184.
    Kato M. Synthesis of Coesite from Ultra Fine Particles [J]. Japn J Appl Phys, 1975, 14(2): 181-183.
    Liu X Y, Su W H, Wang Y F. Transformation of ZSM-5 to ZSM-11 Zeolite under High Pressure [J]. J Chem Soc, Chem Commun, 1992, 12: 902-903.
    Liu X Y, Su W H, Wang Y F. Transformation of MFI to -Quartz and Coesite under High Pressure and High Temperature [J]. J Chem Soc, Chem Commun, 1993, 11: 891-892.
    Liu X Y. Transformation of ZSM-5 Zeolite under High Pressure and High Temperature [J]. Science in China(B), 1994, 37(9): 1054-1062.
    Yao B. Mechanism of Mechanical Crystallization of Amorphous Fe-Mo-Si-B Alloy [J]. J Appl Phys, 2001, 90(3): 1650-1654.
    Liu L. Thermodynamic Mechanisms of Mechanical Crystallization of Amorphous Fe-N Alloy [J]. J Alloy Comp, 2002, 333: 202-206.
    Yao B. Effect of Local Pressure on the Crystallization Product of Amorphous Alloys Induced by Mechanical Milling [J]. J Non-Cryst Sol, 2000, 277: 91-97.
    Yao B, Liu L, Su W H. Formation of Cubic C-B-N by Crystallization of Nano-Amorphous Solid at Atmosphere [J]. J Mater Res, 1998, 13(7): 1753-1756.
    Su W H. Mossbauer Effect Used to Study Rare-Earth Oxides Synthesized by a High-Pressure Method [J]. Phys Rev B, L988, 37(1): 35-37.
    Li L P. Valence Characteristics and Structural Stabilities of the Electrolyte Solid Solutions Ce1-xRExO2-(RE=Eu, Tb) by High Temperature and High Pressure [J]. Chem Mater, 2000, 12: 2567-2574.
    Su W H. An Investigation of the Effect of High Pressure on the Synthesis of LaLnO3 Compounds [J]. Physica, 1986, 139/140B: 661-663.
    Richet P. Superheating, Melting and Vitrification Through Decompression of High-Pressure Minerals [J]. Nature, 1988, 331: 56-58.
    Boyer H. Raman Microprobe (RMP) Determinations of Natural and Synthetic Coesite [J]. Phys and Chem Minerals, 1985, 12: 45-48.
    Xu P C. Raman Study of High-Pressure Metamorphic Coesite in the Central China [J]. Geology Science of the North-Western China, 1992, 13(2): 111-119.
    Sharma S K, Mammone J F, Nicol M F. Raman Investigation of Ring Configurations in Vitrous Silica [J]. Nature, 1981, 292: 140-141.
    Williams Q. High Pressure Infrared Spectra of -Quartz, Coesite, Stishovite, and Silica Glass [J]. J Geophys Res, 1993, 98(12): 22157-22170.
    Jerry W. Shock-Wave Compression of Quartz [J]. J Appl Phys, 1962, 33(3): 922-937.
    de Resse'guier T, Berterretche P, Hallouin M, et al. Structural Transformations in Laser Shock-Loaded Quartz [J]. J Appl Phys, 2003, 94(3): 2123-2129.
    Swift Damian C, Tierney IV Thomas E, Kopp Roger A, et al. Shock Pressures Induced in Condensed Matter by Laser Ablation [J]. Phys Rev E, 2004, 69: 036406-9.
    Su W H, Liu S E, Xu D P, et al. A New Way of Transformation from -Quartz to Coesite [J]. Progress in Natural Science, 2005, 15(10): 1217-1222. (in Chinese)
    苏文辉, 刘曙娥, 许大鹏, 等. 一种由-石英到柯石英转变的新途径 [J]. 自然科学进展, 2005, 15(10): 1217-1222.
  • 加载中
计量
  • 文章访问数:  7358
  • HTML全文浏览量:  324
  • PDF下载量:  862
出版历程
  • 收稿日期:  2005-01-18
  • 修回日期:  2005-04-25
  • 发布日期:  2006-06-05

目录

    /

    返回文章
    返回