高温高压下辉石岩的电导率研究

王多君 李和平 刘丛强 易丽 苏根利 张卫刚 许祖鸣

王多君, 李和平, 刘丛强, 易丽, 苏根利, 张卫刚, 许祖鸣. 高温高压下辉石岩的电导率研究[J]. 高压物理学报, 2004, 18(2): 177-182 . doi: 10.11858/gywlxb.2004.02.014
引用本文: 王多君, 李和平, 刘丛强, 易丽, 苏根利, 张卫刚, 许祖鸣. 高温高压下辉石岩的电导率研究[J]. 高压物理学报, 2004, 18(2): 177-182 . doi: 10.11858/gywlxb.2004.02.014
WANG Duo-Jun, LI He-Ping, LIU Cong-qiang, YI Li, SU Gen-Li, ZHANG Wei-Gang, XU Zu-Ming. The Electrical Conductivity of Pyroxenite at High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 177-182 . doi: 10.11858/gywlxb.2004.02.014
Citation: WANG Duo-Jun, LI He-Ping, LIU Cong-qiang, YI Li, SU Gen-Li, ZHANG Wei-Gang, XU Zu-Ming. The Electrical Conductivity of Pyroxenite at High Temperature and Pressure[J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 177-182 . doi: 10.11858/gywlxb.2004.02.014

高温高压下辉石岩的电导率研究

doi: 10.11858/gywlxb.2004.02.014
详细信息
    通讯作者:

    王多君

The Electrical Conductivity of Pyroxenite at High Temperature and Pressure

More Information
    Corresponding author: WANG Duo-Jun
  • 摘要: 利用阻抗谱在1.0~2.0 GPa、温度450~792 K条件下、105~12 Hz的频率范围内,对辉石岩的电导率进行了研究,并且分析了测试频率对电导的影响,结果表明,电导率对频率具有一定的依赖性;在复平面上出现了代表颗粒内部的阻抗弧。辉石岩的激化焓为0.661~0.673 eV,样品中较高的铁含量可能是造成本实验电导率较高的主要原因。

     

  • Walsh J M, Shreffler R G, Willig F J. Limiting Conditions for Jet Formation in High Velocity Collisions [J]. J Appl Phys, 1953, 24: 349.
    Asay J R. Material Ejection from Shock-Loaded Free Surface of Aluminum and Lead [R]. SAND76-0542, 1976.
    Asay J R. A Model for Estimating the Effects of Surface Roughness on Mass Ejection from Shocked Materials [R]. SAND78-1256, 1978.
    Zeng J R, Zhuang Y H. Mass Ejection from Free Surface of Shock-Loaded Metallic Plates [J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 88-92. (in Chinese)
    曾鉴荣, 庄以河. 动载荷下金属板表面的微物质喷射 [J]. 高压物理学报, 1987, 1(1): 88-92.
    Han C S. A Semi-Empirical Equation for Estimating the Micro-Jet Ejection from Shocked Free-Surface [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234-240. (in Chinese)
    韩长生. 估算冲击加载下材料自由面微射喷射量的一个半经验解析公式 [J]. 高压物理学报, 1989, 3(3): 234-240.
    Chen J, Jing F Q, Zhang J L, et al. Molecular Dynamics Simulation of Micro Particle Ejection from a Shock-Impacted Metal Surface [J]. Acta Physica Sinica, 2002, 51(10): 2386-2391. (in Chinese)
    陈军, 经福谦, 张景琳, 等. 冲击作用下金属表面微喷射的分子动力学模拟 [J]. 物理学报, 2002, 51(10): 2386-2391.
    Lucy L B. A Numerical Approach to the Testing of the Fission Hypothesis [J]. Astron J, 1977, 82: 1013-1020.
    Monaghan J J. Why Particle Methods Work [J]. SIAM Journal of Scientific and Statistical Computing, 1982, 3(4): 422-433.
    Monaghan J J, Gingold R A. Shock Simulation by the Particle Method SPH [J]. J Comput Phys, 1983, 52: 374-389.
    Libersky L D, Petschek A G. Smoothed Particle Hydrodynamics with Strength of Materials [J]. Advances in the Free Lagrange Method, Lecture Notes in Physics, 1990, 395: 248-257.
    Hu X M. Research on Constitutive Model and Spallation of Material under Shock Load [R]. GF-A, ZW-J-2002004, 2002. (in Chinese)
    胡晓棉. 冲击加载下材料本构及断裂研究 [R]. GF-A, ZW-J-2002004, 2002.
    Libersky L D, Randles P W, Carney T C. Recent Improvements in SPH Modeling of Hypervelocity Impact [J]. Int J Impact Engg, 1997, 20: 525-532.
    Benz W, Asphaug E. Simulation of Brittle Solids Using Smooth Particle Hydrodynamics [J]. Computer Physics Communications, 1995, 87: 253-265.
  • 加载中
计量
  • 文章访问数:  7643
  • HTML全文浏览量:  375
  • PDF下载量:  858
出版历程
  • 收稿日期:  2003-05-26
  • 修回日期:  2004-02-18
  • 发布日期:  2004-06-05

目录

    /

    返回文章
    返回