等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析

陈晋阳 郑海飞 曾贻善 孙樯

陈晋阳, 郑海飞, 曾贻善, 孙樯. 等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析[J]. 高压物理学报, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002
引用本文: 陈晋阳, 郑海飞, 曾贻善, 孙樯. 等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析[J]. 高压物理学报, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002
CHEN Jin-Yang, ZHENG Hai-Fei, ZENG Yi-Shan, SUN Qiang. An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002
Citation: CHEN Jin-Yang, ZHENG Hai-Fei, ZENG Yi-Shan, SUN Qiang. An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature[J]. Chinese Journal of High Pressure Physics, 2003, 17(1): 8-15 . doi: 10.11858/gywlxb.2003.01.002

等容条件下H2O-CO2-CH4混合流体的高温拉曼光谱就位分析

doi: 10.11858/gywlxb.2003.01.002
详细信息
    通讯作者:

    陈晋阳

An in-Situ Raman Spectroscopy Study of Isochoric H2O-CO2-CH4 Fluids under High Temperature

More Information
    Corresponding author: CHEN Jin-Yang
  • 摘要: 以合成包裹体作为腔体,用显微激光拉曼探针就位分析了H2O-CO2-CH4混合流体的高温特性。研究结果表明,在高温下,CH4和CO2相互之间对各自拉曼光谱的影响不大,水分子对它们的拉曼峰有比较大的影响。在等容条件下,流体均一前,随着温度的升高,水分子的氢键几乎呈线性减少,均一为气相的流体,水分子伸缩振动拉曼峰的变化与一般气体变化相似;随着温度升高,体系压力的增加,最大峰频率呈很微小的降低趋势。均一为液相的流体中的水分子,在均一温度时,氢键变化发生了转折,均一后流体中水分子的氢键受温度的影响比均一前明显要小,在测量的最高温度520 ℃,水分子存在着一定的氢键作用。一直到拉曼光谱测量的最高温度580 ℃还未均一的流体,液相中水分子存在比较强的氢键作用。

     

  • Shaw R W, Brill T B, Clifford A A, et al. Supercritical Water Solutions [J]. Chem Eng News, 1991, 69(51): 26-39.
    Chen J Y, Huang W. Nearcritical Water-A New Clean Solvent for Chemical Synthesis [J]. World Sci-Tech R & D, 2001, 23(2): 28-30. (in Chinese)
    陈晋阳, 黄卫. 近临界水--化学合成的清洁溶剂 [J]. 世界科技研究与发展, 2001, 23(2): 28-30.
    Yamanaka J, Mori S, Kaneko Y. Hydrothermal Synthesis of Vanadium-Based Layered Compound with 1 nm Basal Spacing [J]. Materials Transactions, 2001, 42(9): 1854-1857.
    Ziegler K J, Doty R C, Johnston K P, et al. Synthesis of Organic Monolayer-Stabilized Copper Nanocrystals in Supercritical Water [J]. J Am Chem Soc, 2001, 123(32): 7797-7803.
    Kritzer P, Dinjus E. An Assessment of Supercritical Water Oxidation(SCWO) - Existing Problems, Possible Solutions and New Reactor Concepts [J]. Chem Eng J, 2001, 83(3): 207-214.
    Mitton D B, Eliaz N, Cline J A, et al. An Overview of the Current Understanding of Corrosion in SCWO Systems for the Destruction of Hazardous Waste Products [J]. Materials Technology, 2001, 16(1): 44-53.
    Weng K N, Xiao W S, Zhang H Z, et al. Experiment Study on Reactions of Graphite and Siderite with Supercritical Water [J]. Chinese Journal of High Pressure Physics, 1996, 10(4): 241-244. (in Chinese)
    翁克难, 肖万生, 张惠之, 等. 石墨、菱铁矿与超临界水反应的实验研究 [J]. 高压物理学报, 1996, 10(4): 241-244.
    Xiao W S, Weng K N, L G C, et al. Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature [J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 169-177. (in Chinese)
    肖万生, 翁克难, 律广才, 等. 聚乙烯与水反应的高温高压实验及热力学探讨 [J]. 高压物理学报, 2001, 15(3): 169-177.
    Frantz J D, Jean D, Bjorn M. An Optical Cell for Raman Spectroscopic Studies of Supercritical Fluids and Its Application to the Study of Water to 500 ℃ and 2000 bar [J]. Chem Geol, 1993, 106(1): 9-26.
    Hoffmann M M, Conradi S. Are There Hydrogen Bonds in Supercritical Water [J]. J Am Chem Soc, 1997, 119(16): 3811-3817.
    Hu S M, Zhang R H, Zhang X T. A Study of Near and Supercritical Fluids Using Diamond Anvil Cell and in-Situ FTIR Spectroscopy [J]. Acta Geological Sinica, 2000, 74(2): 412-417.
    Furutaka S, Kondo H, Ikawa S. Infrared Spectroscopic Study of Water-Aromatic Hydrocarbon Mixtures at High Temperatures and Pressures [J]. Bulletin of the Chemical Society of Japan, 2001, 74(10): 1775-1788.
    David M C, Gerald M K. Measurement of the Raman Spectrum of Liquid Water [J]. J Chem Phys, 1998, 108(7): 2669-2675.
    Ikushima Y, Hatakeda K, Saito N. An in-Situ Raman Spectroscopy Studies of Subcritical and Supercritical Water: The Peculiarity of Hydrogen Bonding Near the Critical Point [J]. J Chem Phys, 1998, 108(14): 5855-5860.
    Matubayasi N, Wakai C, Nakahara M. Structural Study of Supercritical Water. 1. Nuclear Magnetic Resonance Spectroscopy [J]. J Chem Phys 1997, 107(21): 9133-9140.
    Matubayasi N, Wakai C, Nakahara M. NMR Study of Water Structure in Super- and Subcritical Conditions [J]. Phys Rev Lett, 1997, 78(13): 2573-2576.
    Ohtaki H, Radnai T, Yamaguchi T. Structure of Water under Subcritical and Supercritical Conditions Studied by Solution X-Ray Diffraction [J]. Chem Soc Rev, 1997, 26(1): 41-51.
    Ricci M A, Nardone M, Fontana A. Light and Neutron Scattering Studies of the OH Stretching Band in Liquid and Supercritical Water [J]. J Chem Phys, 1998, 108(2): 450-454.
    Bellissent-Funel M C. Structure of Supercritical Water [J]. J Molecular Liquids, 2001, 90 (1-3): 313-322.
    de Jong P H K, Neilson G W. Hydrogen Bond Structure in an Aqueous Solution of Sodium Chloride at Sub- and Supercritical Conditions [J]. J Chem Phys, 1997, 107(20): 8577-8585.
    Kalinichev A G, Churakov S V. Thermodynamics and Structure of Molecular Clusters in Supercritical Water [J]. Fluid Phase Equilibria, 2001, 183: 271-278.
  • 加载中
计量
  • 文章访问数:  6708
  • HTML全文浏览量:  309
  • PDF下载量:  874
出版历程
  • 收稿日期:  2002-02-25
  • 修回日期:  2002-04-18
  • 发布日期:  2003-03-05

目录

    /

    返回文章
    返回