聚乙烯与水反应的高温高压实验及热力学探讨

肖万生 翁克难 律广才 汪本善

肖万生, 翁克难, 律广才, 汪本善. 聚乙烯与水反应的高温高压实验及热力学探讨[J]. 高压物理学报, 2001, 15(3): 169-177 . doi: 10.11858/gywlxb.2001.03.002
引用本文: 肖万生, 翁克难, 律广才, 汪本善. 聚乙烯与水反应的高温高压实验及热力学探讨[J]. 高压物理学报, 2001, 15(3): 169-177 . doi: 10.11858/gywlxb.2001.03.002
XIAO Wan-Sheng, WENG Ke-Nan, Lü Guang-Cai, WANG Ben-Shan. Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 169-177 . doi: 10.11858/gywlxb.2001.03.002
Citation: XIAO Wan-Sheng, WENG Ke-Nan, Lü Guang-Cai, WANG Ben-Shan. Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 169-177 . doi: 10.11858/gywlxb.2001.03.002

聚乙烯与水反应的高温高压实验及热力学探讨

doi: 10.11858/gywlxb.2001.03.002
详细信息
    通讯作者:

    肖万生

Experiments on Reaction of Polyethylene and Water under High Pressure and High Temperature

More Information
    Corresponding author: XIAO Wan-Sheng
  • 摘要: 在金刚石压腔设备中进行聚乙烯的高温高压裂解实验研究。实验分含水和不含水两种情况。在显微镜下观察反应过程中的变化并显微照相记录有关现象,在高压下就位测定反应过程中荧光的变化。用气相色谱方法测定气相产物组成。含水实验中CH4占烃类气体产物的92%并有CO2生成,固体残余物非常少,表明水直接参与了化学反应,为烃类气体的形成提供氢源,为CO2的形成提供氧源。不含水实验中烃类气体的产率相对较低并有较多的固相残余物存在。用热力学理论探讨了实验中有关反应的机制。根据聚乙烯与干酪根结构的可比性,推测在水参与条件下有利于提高有机质裂解成烃的产率。

     

  • Seewald J S. Evidence for Metastable Equilibrium between Hydrocarbons under Hydrothermal Conditions [J]. Nature, 1994, 370: 285-287.
    Seewald J S, Benttez-Nelson B C, Whelan J K. Laboratory and Theoretical Constraints on the Generation and Composition of Natural Gas [J]. Geochimica et Cosmochimica Acta, 1998, 62(9): 1599-1617.
    Lewan M D. Experiments on the Role of Water in Petroleum Formation [J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3691-3723.
    傅家谟, 秦匡宗. 干酪根地球化学 [M]. 广州: 广东科技出版社, 1995.
    翁克难, 肖万生, 张惠之, 等. 石墨、菱铁矿与超临界水反应的实验研究 [J].髙压物理学报, 1996, 10(4): 241-244.
    Deines P. The Carbon Isotopic Composition of Diamonds: Relationship to Diamond Shape, Color, Occurrence and Vapor Composition [J]. Geochimica et Cosmochimica Acta, 1980, 44: 943-961.
    Holloway J R. Graphite-CH4-H20-CO2 Equilibria at Low-Grade Metamorhpic Conditions [J]. Geology, 1984, 12: 455-458.
    杨晓勇, 刘德良, 陶士振. 中国东部典型地幔岩中包裹体成分研究及意义 [J]. 石油学报, 1999, 20(1): 1923.
    苏犁, 宋述光, 王志海. 北祁连山玉石沟地幔橄榄岩中富CH4流体包裹体及其意义 [J]. 科学通报, 1999, 44(8): 855-858.
    Hall D L, Bodnar R J. Methane in Fluid Inclusions from Granulites: A Product of Hydrogen Diffusion? [J]. Geochimica et Cosmochimica Acta, 1990, 54: 641-651.
    Saxena S K, Fei Y. High Pressure and High Temperature Fluid Fugacities [J]. Geochimica et Cosmochimica Acla, 1987, 51: 783-791.
    Belonochko B, Saxena S K. Equation of State of Fluid at High Temperature and Pressure [A]. Saxena S K. Thermo-dynamics and Estimation. Advances in Physical Geochemistry [C]. Springer-Verlag, 1992. 335-358.
    林传仙, 白正华, 张哲儒. 矿物及有关化合物热力学数据手册 [M]. 北京: 科学出版社, 1985.
    Ancilotto F, et al. Dissociation of Methane into Hydrocarbons at Extreme (Planetary) Pressure and Temperalure [J]. Science, 1997, 275: 1288-1290.
    Benedetti L R, et al. Dissociation of CH4 at High Pressures and Temperatures: Diamond Formation in Giant Planet In-teriors? [J]. Science, 1999, 286: 100-102.
  • 加载中
计量
  • 文章访问数:  8833
  • HTML全文浏览量:  610
  • PDF下载量:  607
出版历程
  • 收稿日期:  2000-11-20
  • 修回日期:  2000-11-20
  • 发布日期:  2001-09-05

目录

    /

    返回文章
    返回