金属的冲击波温度测量(Ⅳ)三层介质模型及其应用

谭华 戴诚达

谭华, 戴诚达. 金属的冲击波温度测量(Ⅳ)三层介质模型及其应用[J]. 高压物理学报, 2000, 14(2): 81-91 . doi: 10.11858/gywlxb.2000.02.001
引用本文: 谭华, 戴诚达. 金属的冲击波温度测量(Ⅳ)三层介质模型及其应用[J]. 高压物理学报, 2000, 14(2): 81-91 . doi: 10.11858/gywlxb.2000.02.001
TAN Hua, DAI Cheng-Da. Shock Temperature Measurement for Metals (Ⅳ)-'Three Layer Model' and Its Application[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 81-91 . doi: 10.11858/gywlxb.2000.02.001
Citation: TAN Hua, DAI Cheng-Da. Shock Temperature Measurement for Metals (Ⅳ)-'Three Layer Model' and Its Application[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 81-91 . doi: 10.11858/gywlxb.2000.02.001

金属的冲击波温度测量(Ⅳ)三层介质模型及其应用

doi: 10.11858/gywlxb.2000.02.001
详细信息
    通讯作者:

    谭华

Shock Temperature Measurement for Metals (Ⅳ)-'Three Layer Model' and Its Application

More Information
    Corresponding author: TAN Hua
  • 摘要: 重点讨论了非理想界面对利用辐射法测量金属的冲击波温度的影响,建立并给出了三层介质模型的热传导方程的普适解析解,分别将该解析解应用于块状金属样品的冲击波温度测量、热阻模型以及利用对称夹心装置测量蓝宝石单晶的高压热传导问题;重点研究和讨论了利用块状样品进行金属材料冲击波温度测量的原理和可能性,以及在利用块状样品进行金属材料冲击波温度测量时实验装置设计应该满足的要求。三层介质模型的分析表明:只要块状样品与透明窗口之间的间隙尺度小于1.0 m(最好小于0.5 m),则样品/窗口界面的温度在大约几十纳秒的时间内即可从尖峰温度衰减到与理想界面温度相当接近的值。根据样品/窗口界面的这一热弛豫特性,可以直接利用块状金属样品测量冲击波温度而不必采用镀膜技术。给出了利用块状铁陨石样品和单晶蓝宝石(Al2O3)窗口进行冲击波温度测量的初步实验结果,与三层介质模型的预期结果符合得很好。

     

  • Bass J D, Svendsen B, Ahrens T J. The Temperature of Shock-Compressed Iron [A]. Manghnani M, Syono Y, eds. High Pressure Research in Mineral Physics [C]. Tokyo: Terra Scientific Publishing Co, 1987: 393-402.
    Urtiew P A, Grover R. Temperature Deposition Caused by Shock Interaction with Material Interfaces [J]. J Appl Phys, 1974, 45: 140-145.
    Grover R, Urtiew P A. Themial Relaxation at Interfaces Following Shock Compression [J]. J Appl Phys, 1974, 45: 146- 152.
    Nellis W J, Yoo C S. Issues Concerning Shock Temperature Measurements of Iron and Other Metals [J]. J Geophys Res, 1990, 95(B13): 21749-21752.
    汤文辉. 金属冲击波温度测量的理论和实验研究 [D]. 长沙: 国防科技大学, 1995.
    Tang Wenhui, Jing Fuqian, Hu Jinbiao, et al. New Method for Determining the Shock Temperature of Metals [J]. Chin. Phys Letter, 1994, 11(9): 569-572.
    Tang Wenhui, Jing Fuqian, Zhang Ruoqd. et al. Thennal Relaxation Phenomena Across the Metal/Window Interface and Its Significance to Shock Temperature Measurement of Metals [J]. J Appl Phys, 1996, 80(6): 3284-3253.
    谭华. 金属的冲击波温度测量(in)基板/样品界面间隙对辐射法测量冲击波温度的影响 [J]. 高压物理学报, 1999, 13(3): 161-168.
    戴诚达. 铁陨石的冲击熔化特性与地核的热结构[D]. 绵阳: 中物院流体物理研究所, 1999.
    Mott N F, Jones H. The Theory of the Properties of Metals and Alloys [M]. New York: Dover Publications Inc, 1959.
    Gallagher K G, Ahrens T J. Ultra High Pressure Tliermal Conductivity Measurements of Griceite and Coamdum [A]. Pre-Prints of the 20th International Symposium on Shock Waves [C]. Caltech, 1995.
  • 加载中
计量
  • 文章访问数:  7159
  • HTML全文浏览量:  272
  • PDF下载量:  732
出版历程
  • 收稿日期:  1999-09-09
  • 修回日期:  1999-11-05
  • 发布日期:  2000-06-05

目录

    /

    返回文章
    返回