[1] 黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用 [M]. 北京: 国防工业出版社, 2012.

HUANG X, ZHU Z S, WANG H H. Advanced aeronautical titanium alloys and applications [M]. Beijing: National Defense Industry Press, 2012.
[2] GUIDA M, MARULO F, MEO M, et al. SPH-Lagrangian study of bird impact on leading edge wing [J]. Composite Structures, 2011, 93(3): 1060–1071. doi: 10.1016/j.compstruct.2010.10.001
[3] DE VUYST T, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. doi: 10.1016/j.ijimpeng.2004.04.017
[4] 张鼎逆, 上官倩芡, 刘富. 基于SPH方法的LY12-CZ铝合金平板鸟撞模型 [J]. 江苏大学学报: 自然科学版, 2016, 37(4): 418–422. doi: 10.3969/j.issn.1671-7775.2016.04.008

ZHANG D N, SHANGGUAN Q Q, LIU F. Model of bird impact on LY12-CZ aluminum alloy plate based on SPH [J]. Journal of Jiangsu University (Natural Science Edition), 2016, 37(4): 418–422. doi: 10.3969/j.issn.1671-7775.2016.04.008
[5] 刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93. doi: 10.3969/j.issn.1000-3835.2008.09.022

LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93. doi: 10.3969/j.issn.1000-3835.2008.09.022
[6] 刘富, 张嘉振, 童明波, 等. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析 [J]. 振动与冲击, 2014, 33(4): 113–118. doi: 10.3969/j.issn.1000-3835.2014.04.021

LIU F, ZHANG J Z, TONG M B, et al. Dynamic tests and bird impact dynamic response analysis for a 2024-T3 aluminum alloy plate [J]. Journal of Vibration and Shock, 2014, 33(4): 113–118. doi: 10.3969/j.issn.1000-3835.2014.04.021
[7] LIU J, LI Y L, GAO X S. Bird strike on a flat plate: experiments and numerical simulations [J]. International Journal of Impact Engineering, 2014, 70: 21–37. doi: 10.1016/j.ijimpeng.2014.03.006
[8] 姚小虎, 韩强, 赵隆茂, 等. 飞机圆弧风挡的抗鸟撞击问题研究 [J]. 华南理工大学学报(自然科学版), 2007, 35(2): 6–12. doi: 10.3321/j.issn:1000-565X.2007.02.002

YAO X H, HAN Q, ZHAO L M, et al. Investigation into arc windshield of aircraft subjected to bird impact [J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(2): 6–12. doi: 10.3321/j.issn:1000-565X.2007.02.002
[9] 邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能 [J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

ZOU X T, ZHANG X Q, YAO X H. Dynamic behavior of TB6 titanium alloy under shear-compression loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
[10] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024

HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024
[11] KAY G. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model: DOT/FAA/AR-03/57 [R]. Washington: U.S. Department of Transportation, Federal Aviation Administration, 2003: 1–11.