[1] RICHTMYER R D. Taylor instability in shock acceleration of compressible fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13(2): 297–319. doi: 10.1002/(ISSN)1097-0312
[2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104.
[3] ANDREWS M J. Workshop: research needs for material mixing at extremes: LA-UR-11-02565 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
[4] GRAZIANI F R, BATISTA V S, BENEDICT L X, et al. Large-scale molecular dynamics simulations of dense plasmas: the Cimarron Project [J]. High Energy Density Physics, 2012, 8(1): 105–131. doi: 10.1016/j.hedp.2011.06.010
[5] ZHAKHOVSKII V, NISHIHARA K, ABE M. Molecular dynamics simulation on stability of converging shocks [C]// TANAKA K A, MEYERHOFER D D, MEYER-TER-VEHN J. Proceedings of the 2nd International Conference on Inertial Fusion Science and Applications. Paris: Elsevier, 2002: 106-109.
[6] KADAU K, GERMANN T C, HADJICONSTANTINOU N G, et al. Nanohydrodynamics simulations: an atomistic view of the Rayleigh-Taylor instability [J]. Proceedings of the National Academy of Sciences, 2004, 101(16): 5851–5855. doi: 10.1073/pnas.0401228101
[7] ZYBIN S V, ZHAKHOVSKII V V, BRINGA E M, et al. Molecular dynamics simulations of the Richtmyer-Meshkov instability in shock loaded solids [J]. AIP Conference Proceedings, 2006, 845(1): 437–441.
[8] CHERNE F J, DIMONTE G, GERMANN T C. Richtmyer-Meschov instability examined with large-scale molecular dynamic simulations: LA-UR-11-04503 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
[9] 龚新高. 高温及高压下液体镓的结构——第一性原理分子动力学方法研究 [J]. 物理学报, 1995, 44(6): 885–896

GONG X G. Structural properties of liquid gallium at high temperature and high pressure—an ab initio molecular dynamics study [J]. Acta Physica Sinica, 1995, 44(6): 885–896
[10] 何以广. 氢和氦高压物性的第一原理分子动力学研究及实验探索 [D]. 北京: 清华大学, 2010.
[11] 张玉娟. 温稠密乙烷等流体物性的第一性原理分子动力学研究 [D]. 北京: 中国工程物理研究院, 2013.
[12] 刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179

LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179
[13] 王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010

WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156 doi: 10.3969/j.issn.1000-5773.2004.02.010
[14] HUANG S, WANG W, LUO X. Molecular-dynamics simulation of Richtmyer-Meshkov instability on a Li-H2 interface at extreme compressing conditions [J]. Physics of Plasmas, 2018, 25(6): 062705. doi: 10.1063/1.5018845
[15] DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B, 1984, 29(12): 6443. doi: 10.1103/PhysRevB.29.6443
[16] ACKLAND G J, BACON D J, CALDER A F, et al. Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential [J]. Philosophical Magazine A, 1997, 75(3): 713–732. doi: 10.1080/01418619708207198
[17] GERMANN T C, DIMONTE G, HAMMERBERG J E, et al. Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper [C]// DYMAT 2009, EDP Sciences, 2009: 1499-1505.
[18] RIKANATI A, ORON D, SADOT O, et al. High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability [J]. Physical Review E, 2003, 67(2): 026307. doi: 10.1103/PhysRevE.67.026307
[19] DIMONTE G, RAMAPRABHU P. Simulations and model of the nonlinear Richtmyer-Meshkov instability [J]. Physics of Fluids, 2010, 22(1): 014104. doi: 10.1063/1.3276269
[20] HOLMES R L, DIMONTE G, FRYXELL B, et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory [J]. Journal of Fluid Mechanics, 1999, 389: 55–79. doi: 10.1017/S0022112099004838