[1] SALZMANN C G, RADAELLI P G, SLATER B, et al. The polymorphism of ice: five unresolved questions [J]. Physical Chemistry Chemical Physics, 2011, 13(41): 18468–18480. doi: 10.1039/c1cp21712g
[2] BARTELS-RAUSCH T, BERGERON V, CARTWRIGHT J H E, et al. Ice structures, patterns, and processes: a view across the icefields [J]. Reviews of Modern Physics, 2012, 84(2): 885–944. doi: 10.1103/RevModPhys.84.885
[3] KUHS W F, LEHMANN M S. The structure of the ice Ih by neutron diffraction [J]. The Journal of Physical Chemistry, 1983, 87(21): 4312–4313. doi: 10.1021/j100244a063
[4] ANDERSSON O, SUGA H. Thermal conductivity of amorphous ices [J]. Physical Review B, 2002, 65(14): 140201. doi: 10.1103/PhysRevB.65.140201
[5] HANSEN T C, FALENTY A, KUHS W F. Modelling ice Ic of different origin and stacking-faulted hexagonal ice using neutron powder diffraction data [J]. Special Publication-Royal Society of Chemistry, 2006, 311: 201.
[6] MURRAY B J, BERTRAM A K. Formation and stability of cubic ice in water droplets [J]. Physical Chemistry Chemical Physics, 2006, 8(1): 186–192. doi: 10.1039/B513480C
[7] MALKIN T L, MURRAY B J, BRUKHNO A V, et al. Structure of ice crystallized from supercooled water [J]. Proceedings of the National Academy of Sciences, 2012, 109(4): 1041–1045. doi: 10.1073/pnas.1113059109
[8] KAMB B. Ice II. a proton-ordered form of ice [J]. Acta Crystallographica, 1964, 17(11): 1437–1449. doi: 10.1107/S0365110X64003553
[9] FORTES A D, WOOD I G, ALFREDSSON M, et al. The incompressibility and thermal expansivity of D2O ice II determined by powder neutron diffraction [J]. Journal of Applied Crystallography, 2005, 38(4): 612–618. doi: 10.1107/S0021889805014226
[10] LONDONO J D, KUHS W F, FINNEY J L. Neutron diffraction studies of ices III and IX on under-pressure and recovered samples [J]. The Journal of Chemical Physics, 1993, 98(6): 4878–4888. doi: 10.1063/1.464942
[11] ENGELHARDT H, KAMB B. Structure of ice IV, a metastable high-pressure phase [J]. The Journal of Chemical Physics, 1981, 75(12): 5887–5899. doi: 10.1063/1.442040
[12] KAMB B, PRAKASH A, KNOBLER C. Structure of ice V [J]. Acta Crystallographica, 1967, 22(5): 706–715. doi: 10.1107/S0365110X67001409
[13] KUHS W F, FINNEY J L, VETTIER C, et al. Structure and hydrogen ordering in ices VI, VII, and VIII by neutron powder diffraction [J]. The Journal of Chemical Physics, 1984, 81(8): 3612–3623. doi: 10.1063/1.448109
[14] JORGENSEN J D, WORLTON T G. Disordered structure of D2O ice VII from in situ neutron powder diffraction [J]. The Journal of Chemical Physics, 1985, 83(1): 329–333. doi: 10.1063/1.449867
[15] BESSON J M, PRUZAN P, KLOTZ S, et al. Variation of interatomic distances in ice VIII to 10 GPa [J]. Physical Review B, 1994, 49(18): 12540–12550. doi: 10.1103/PhysRevB.49.12540
[16] HEMLEY R J, JEPHCOAT A P, MAO H K, et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar) [J]. Nature, 1987, 330(6150): 737–740. doi: 10.1038/330737a0
[17] LEADBETTER A J, WARD R C, CLARK J W, et al. The equilibrium low-temperature structure of ice [J]. The Journal of Chemical Physics, 1985, 82(1): 424–428. doi: 10.1063/1.448763
[18] SALZMANN C G, KOHL I, LOERTING T, et al. Pure ices IV and XII from high-density amorphous ice [J]. Canadian Journal of Physics, 2003, 81(1): 25–32.
[19] KOZA M, SCHOBER H, T LLE A, et al. Formation of ice XII at different conditions [J]. Nature, 1999, 397(6721): 660–661.
[20] SALZMANN C G, RADAELLI P G, HALLBRUCKER A, et al. The preparation and structures of hydrogen ordered phases of ice [J]. Science, 2006, 311(5768): 1758–1761. doi: 10.1126/science.1123896
[21] SALZMANN C G, RADAELLI P G, MAYER E, et al. Ice XⅤ: a new thermodynamically stable phase of ice [J]. Physical Review Letters, 2009, 103(10): 105701. doi: 10.1103/PhysRevLett.103.105701
[22] FALENTY A, HANSEN T C, KUHS W F. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate [J]. Nature, 2014, 516(7530): 231–233. doi: 10.1038/nature14014
[23] DEL ROSSO L, CELLI M, ULIVI L. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice [J]. Nature Communications, 2016, 7: 13394. doi: 10.1038/ncomms13394
[24] RUSSO J, ROMANO F, TANAKA H. New metastable form of ice and its role in the homogeneous crystallization of water [J]. Nature Materials, 2014, 13(7): 733–739. doi: 10.1038/nmat3977
[25] KOSYAKOV V I, SHESTAKOV V A. On the possibility of the existence of a new ice phase under negative pressures [J]. Doklady Physical Chemistry, 2001, 376(4): 49–51.
[26] CONDE M M, VEGA C, TRIBELLO G A, et al. The phase diagram of water at negative pressures: virtual ices [J]. The Journal of Chemical Physics, 2009, 131(3): 034510. doi: 10.1063/1.3182727
[27] HUANG Y, ZHU C, WANG L, et al. A new phase diagram of water under negative pressure: the rise of the lowest-density clathrate s-III [J]. Science Advances, 2016, 2(2): e1501010. doi: 10.1126/sciadv.1501010
[28] HUANG Y, ZHU C, WANG L, et al. Prediction of a new ice clathrate with record low density: a potential candidate as ice XIX in guest-free form [J]. Chemical Physics Letters, 2017, 671: 186–191. doi: 10.1016/j.cplett.2017.01.035
[29] MCMAHON J M. Ground-state structures of ice at high pressures from ab initio random structure searching [J]. Physical Review B, 2011, 84(22): 220104. doi: 10.1103/PhysRevB.84.220104
[30] JI M, UMEMOTO K, WANG C-Z, et al. Ultrahigh-pressure phases of H2O ice predicted using an adaptive genetic algorithm [J]. Physical Review B, 2011, 84(22): 220105. doi: 10.1103/PhysRevB.84.220105
[31] WANG Y, LIU H, LV J, et al. High pressure partially ionic phase of water ice [J]. Nature Communications, 2011, 2: 563. doi: 10.1038/ncomms1566
[32] MILITZER B, WILSON H F. New phases of water ice predicted at megabar pressures [J]. Physical Review Letters, 2010, 105(19): 195701. doi: 10.1103/PhysRevLett.105.195701
[33] STROBEL T A, SOMAYAZULU M, SINOGEIKIN S V, et al. Hydrogen-stuffed, quartz-like water ice [J]. Journal of the American Chemical Society, 2016, 138(42): 13786–13789. doi: 10.1021/jacs.6b06986
[34] DEL ROSSO L, GRAZZI F, CELLI M, et al. Refined structure of metastable ice XVII from neutron diffraction measurements [J]. The Journal of Physical Chemistry C, 2016, 120(47): 26955–26959. doi: 10.1021/acs.jpcc.6b10569
[35] FENNELL C J, GEZELTER J D. Computational free energy studies of a new ice polymorph which exhibits greater stability than ice Ih [J]. Journal of Chemical Theory and Computation, 2005, 1(4): 662–667. doi: 10.1021/ct050005s
[36] CHOU I-M, SHARMA A, BURRUSS R C, et al. Transformations in methane hydrates [J]. Proceedings of the National Academy of Sciences, 2000, 97(25): 13484–13487. doi: 10.1073/pnas.250466497
[37] VATAMANU J, KUSALIK P G. Unusual crystalline and polycrystalline structures in methane hydrates [J]. Journal of the American Chemical Society, 2006, 128(49): 15588–15589. doi: 10.1021/ja066515t
[38] KURNOSOV A, MANAKOV A, YU. KOMAROV V, et al. A new gas hydrate structure [J]. Doklady Physical Chemistry, 2001, 381(5): 303–305.
[39] IMRE A R. On the existence of negative pressure states [J]. Physica Status Solidi (B), 2007, 244(3): 893–899. doi: 10.1002/(ISSN)1521-3951
[40] HERBERT E, BALIBAR S, CAUPIN F. Cavitation pressure in water [J]. Physical Review E, 2006, 74(4): 041603.
[41] DAVITT K, ROLLEY E, CAUPIN F, et al. Equation of state of water under negative pressure [J]. The Journal of Chemical Physics, 2010, 133(17): 174507. doi: 10.1063/1.3495971
[42] AZOUZI M E M, RAMBOZ C, LENAIN J-F, et al. A coherent picture of water at extreme negative pressure [J]. Nature Physics, 2012, 9(1): 38.
[43] ZHENG Q, DURBEN D J, WOLF G H, et al. Liquids at large negative pressures: water at the homogeneous nucleation limit [J]. Science, 1991, 254(5033): 829–832. doi: 10.1126/science.254.5033.829
[44] YANG S H, NOSONOVSKY M, ZHANG H, et al. Nanoscale water capillary bridges under deeply negative pressure [J]. Chemical Physics Letters, 2008, 451(1): 88–92.
[45] JACOBSON L C, HUJO W, MOLINERO V. Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water [J]. The Journal of Physical Chemistry B, 2009, 113(30): 10298–10307. doi: 10.1021/jp903439a
[46] VOS W L, FINGER L W, HEMLEY R J, et al. Novel H2-H2O clathrates at high pressures [J]. Physical Review Letters, 1993, 71(19): 3150–3153. doi: 10.1103/PhysRevLett.71.3150
[47] DYADIN Y A, LARIONOV E G, MANAKOV A Y, et al. Clathrate hydrates of hydrogen and neon [J]. Mendeleev Communications, 1999, 9(5): 209–210. doi: 10.1070/MC1999v009n05ABEH001104
[48] MAO W L, MAO H-K, GONCHAROV A F, et al. Hydrogen clusters in clathrate hydrate [J]. Science, 2002, 297(5590): 2247–2249. doi: 10.1126/science.1075394
[49] MAO W L, MAO H-K. Hydrogen storage in molecular compounds [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(3): 708–710. doi: 10.1073/pnas.0307449100
[50] LOKSHIN K A, ZHAO Y. Fast synthesis method and phase diagram of hydrogen clathrate hydrate [J]. Applied Physics Letters, 2006, 88(13): 131909. doi: 10.1063/1.2190273
[51] FLORUSSE L J, PETERS C J, SCHOONMAN J, et al. Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate [J]. Science, 2004, 306(5695): 469–471. doi: 10.1126/science.1102076
[52] LEE H, LEE J-W, KIM D Y, et al. Tuning clathrate hydrates for hydrogen storage [J]. Nature, 2005, 434(7034): 743. doi: 10.1038/nature03457
[53] KOMATSU H, YOSHIOKA H, OTA M, et al. Phase equilibrium measurements of hydrogen-tetrahydrofuran and hydrogen-cyclopentane binary clathrate hydrate systems [J]. Journal of Chemical & Engineering Data, 2010, 55(6): 2214–2218.
[54] STROBEL T A, HESTER K C, SLOAN E D, et al. A hydrogen clathrate hydrate with cyclohexanone: structure and stability [J]. Journal of the American Chemical Society, 2007, 129(31): 9544–9545. doi: 10.1021/ja072074h
[55] STROBEL T A, KOH C A, SLOAN E D. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen [J]. The Journal of Physical Chemistry B, 2008, 112(7): 1885–1887. doi: 10.1021/jp7110549
[56] DUARTE A R C, SHARIATI A, ROVETTO L J, et al. Water cavities of sH clathrate hydrate stabilized by molecular hydrogen: phase equilibrium measurements [J]. The Journal of Physical Chemistry B, 2008, 112(7): 1888–1889. doi: 10.1021/jp7110605
[57] KIM D-Y, LEE H. Spectroscopic identification of the mixed hydrogen and carbon dioxide clathrate hydrate [J]. Journal of the American Chemical Society, 2005, 127(28): 9996–9997. doi: 10.1021/ja0523183
[58] JIANG X, WU X, ZHENG Z, et al. Ionic and superionic phases in ammonia dihydrate NH3·2H2O under high pressure [J]. Physical Review B, 2017, 95(14): 144104. doi: 10.1103/PhysRevB.95.144104
[59] WILLOW S Y, XANTHEAS S S. Enhancement of hydrogen storage capacity in hydrate lattices [J]. Chemical Physics Letters, 2012, 525/526: 13–18. doi: 10.1016/j.cplett.2011.12.036
[60] AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in materials studio [J]. Molecular Simulation, 2013, 39(14/15): 1153–1164. doi: 10.1080/08927022.2013.843775
[61] KIRCHNER M T, BOESE R, BILLUPS W E, et al. Gas hydrate single-crystal structure analyses [J]. Journal of the American Chemical Society, 2004, 126(30): 9407–9412. doi: 10.1021/ja049247c
[62] KRESSE G, FURTHM LLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
[63] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
[64] LEE K, MURRAY É D, KONG L, et al. Higher-accuracy van der Waals density functional [J]. Physical Review B, 2010, 82(8): 081101. doi: 10.1103/PhysRevB.82.081101
[65] SPOEL D V D, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free [J]. Journal of Computational Chemistry, 2005, 26(16): 1701–1718. doi: 10.1002/(ISSN)1096-987X
[66] MOUSTAFA S G, SCHULTZ A J, KOFKE D A. Effects of finite size and proton disorder on lattice-dynamics estimates of the free energy of clathrate hydrates [J]. Industrial and Engineering Chemistry Research, 2015, 54(16): 4487–4496. doi: 10.1021/ie504008h
[67] VEGA C, ABASCAL J L F, MCBRIDE C, et al. The fluid–solid equilibrium for a charged hard sphere model revisited [J]. The Journal of Chemical Physics, 2003, 119(2): 964–971. doi: 10.1063/1.1576374
[68] L SAL M, VACEK V. Direct evaluation of solid–liquid equilibria by molecular dynamics using Gibbs-Duhem integration [J]. Molecular Simulation, 1997, 19(1): 43–61. doi: 10.1080/08927029708024137
[69] CHALLA S R, SHOLL D S, JOHNSON J K. Adsorption and separation of hydrogen isotopes in carbon nanotubes: multicomponent grand canonical Monte Carlo simulations [J]. The Journal of Chemical Physics, 2002, 116(2): 814–824. doi: 10.1063/1.1423665
[70] RAPPE A K, CASEWIT C J, COLWELL K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. Journal of the American Chemical Society, 1992, 114(25): 10024–10035. doi: 10.1021/ja00051a040
[71] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
[72] TRIBELLO G A, SLATER B, ZWIJNENBURG M A, et al. Isomorphism between ice and silica [J]. Physical Chemistry Chemical Physics, 2010, 12(30): 8597–8606. doi: 10.1039/b916367k
[73] GIES H, MARKER B. The structure-controlling role of organic templates for the synthesis of porosils in the systems SiO2/template/H2O [J]. Zeolites, 1992, 12(1): 42–49. doi: 10.1016/0144-2449(92)90008-D
[74] WHALLEY E. Energies of the phases of ice at zero temperature and pressure [J]. The Journal of Chemical Physics, 1984, 81(9): 4087–4092. doi: 10.1063/1.448153
[75] ABASCAL J L F, VEGA C. A general purpose model for the condensed phases of water: TIP4P/2005 [J]. The Journal of Chemical Physics, 2005, 123(23): 234505. doi: 10.1063/1.2121687
[76] SLOAN JR E D, KOH C. Clathrate hydrates of natural gases [M]. 3rd ed. Boca Raton, FL: CRC press, 2008.
[77] PAQUETTE L A, TERNANSKY R J, BALOGH D W, et al. Total synthesis of dodecahedrane [J]. Journal of the American Chemical Society, 1983, 105(16): 5446–5450. doi: 10.1021/ja00354a043
[78] STRUZHKIN V V, MILITZER B, MAO W L, et al. Hydrogen storage in molecular clathrates [J]. Chemical Reviews, 2007, 107(10): 4133–4151. doi: 10.1021/cr050183d
[79] LIN K, YUAN Q, ZHAO Y-P. Using graphene to simplify the adsorption of methane on shale in MD simulations [J]. Computational Materials Science, 2017, 133: 99–107. doi: 10.1016/j.commatsci.2017.03.010