[1] 李晓杰, 姜力, 赵铮, 等. 高速旋转弹头侵彻运动金属薄板的数值模拟 [J]. 爆炸与冲击, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010

LI X J, JIANG L, ZHAO Z, et al. Numerical study on penetration of a high-speed-rotating bullet into the moving sheet-metal plate [J]. Explosion and Shock Waves, 2008, 28(1): 57–61. doi: 10.3321/j.issn:1001-1455.2008.01.010
[2] 李勇, 于海龙, 芮筱亭. 旋转弹侵彻钢板的数值模拟 [J]. 火力与指挥控制, 2014(12): 31–35.

LI Y, YU H L, RUI X T. Numerical study on penetration of rotating projectile into steel plate [J]. Fire Control & Command Control, 2014(12): 31–35.
[3] 赵海龙, 王华. 旋转战斗部侵彻多层间隔靶的终点弹道的数值模拟 [J]. 中北大学学报(自然科学版), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009

ZHAO H L, WANG H. Numerical simulation of terminal ballistic of rotating warhead penetrating into multi-layer spaced target [J]. Journal of North University of China (Natural Science Edition), 2017, 38(3): 295–301. doi: 10.3969/j.issn.1673-3193.2017.03.009
[4] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻铝靶试验与数值模拟 [J]. 弹道学报, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014

PANG C X, HE Y, SHEN X J, et al. Experimental investigation and numerical simulation on grooved projectile rotationally penetrating into aluminum target [J]. Journal of Ballistics, 2015, 27(1): 70–75. doi: 10.3969/j.issn.1004-499X.2015.01.014
[5] 庞春旭, 何勇, 沈晓军, 等. 刻槽弹体旋转侵彻混凝土效应试验研究 [J]. 兵工学报, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007

PANG C X, HE Y, SHEN X J, et al. Experimental investigation on penetration of grooved projectiles into concrete targets [J]. Acta Armamentarii, 2015, 36(1): 46–52. doi: 10.3969/j.issn.1000-1093.2015.01.007
[6] 潘绪超, 何勇, 何源, 等. 旋转助推钻地弹侵彻混凝土靶试验研究 [J]. 固体火箭技术, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003

PAN X C, HE Y, HE Y, et al. Experimental study of penetrating concrete target with a spin-boosted earth penetrating weapon [J]. Journal of Solid Rocket Technology, 2011, 34(2): 146–149. doi: 10.3969/j.issn.1006-2793.2011.02.003
[7] 赵子龙, 张瑾瑾, 黄晓琼. 长杆弹侵彻半无限厚土的旋转效应分析 [J]. 振动与冲击, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003

ZHAO Z L, ZHANG J J, HUANG X Q. Revolution effect analysis of a long rod penetrating into soil [J]. Journal of Vibration & Shock, 2010, 29(4): 9–11. doi: 10.3969/j.issn.1000-3835.2010.04.003
[8] GUPTA N K, MADHU V. Normal and oblique impact of a kinetic energy projectile on mild steel plates [J]. International Journal of Impact Engineering, 1992, 12(3): 333–343. doi: 10.1016/0734-743X(92)90101-X
[9] MADHU V, RAMANJANEYULU K, BHAT T B, et al. An experimental study of penetration resistance of ceramic armour subjected to projectile impact [J]. International Journal of Impact Engineering, 2005, 32(1): 337–350.
[10] DEY S, BØRVIK T, HOPPERSTAD O S, et al. The effect of target strength on the perforation of steel plates using three different projectile nose shapes [J]. International Journal of Impact Engineering, 2004, 30(8): 1005–1038.
[11] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics-A/Solids, 2001, 20(5): 685–712. doi: 10.1016/S0997-7538(01)01157-3
[12] ROSENBERG Z, DEKEL E. 终点弹道学[M]. 钟方平, 译. 北京: 国防工业出版社, 2014: 85–86.
[13] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al. Perforation of 12 mm thick steel plates by 20 mm diameter projectiles with flat, hemispherical and conical noses: part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2002, 27(1): 37–64. doi: 10.1016/S0734-743X(01)00035-5