[1] 张庆明, 黄风雷. 超高速碰撞动力学引论[M]. 北京: 科学出版社, 2000: 1.

ZHANG Q M, HUANG F L. Introduction to dynamics of hypervelocity impact [M]. Beijing: Science Press, 2000: 1.
[2] 曲广吉, 韩增尧. 空间碎片超高速撞击动力学建模与数值仿真技术 [J]. 中国空间科学技术, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005

QU G J, HAN Z Y. Dynamical modeling and numerical simulation of hypervelocity space debris impact [J]. Chinese Space Science and Technology, 2002(5): 26–30. doi: 10.3321/j.issn:1000-758X.2002.05.005
[3] WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 1161: 131–147.
[4] WICKLEIN M, RYAN S, WHITE D M, et al. Hypervelocity impact on CFRP: testing, material modelling, and numerical simulation [J]. International Journal of Impact Engineering, 2008, 35(12): 1861–1869. doi: 10.1016/j.ijimpeng.2008.07.015
[5] HUANG J, MA Z, REN L, et al. A new engineering model of debris cloud produced by hypervelocity impact [J]. International Journal of Impact Engineering, 2013, 56: 32–39. doi: 10.1016/j.ijimpeng.2012.07.003
[6] CHRISTIANSEN E L. Design and performance equations for advanced meteoroid and debris shields [J]. International Journal of Impact Engineering, 1993, 14(1): 145–156.
[7] 龚自正, 杨继云, 张文兵, 等. 航天器空间碎片超高速撞击防护的若干问题 [J]. 航天器环境工程, 2007, 24(3): 125–130. doi: 10.3969/j.issn.1673-1379.2007.03.001

GONG Z Z, YANG J Y, ZHANG W B, et al. Spacecraft protection from the hypervelocity impact of space meteoroid and orbital debris [J]. Spacecraft Environment Engineering, 2007, 24(3): 125–130. doi: 10.3969/j.issn.1673-1379.2007.03.001
[8] SCHONBERG W P. Characterizing secondary debris impact ejecta [J]. International Journal of Impact Engineering, 2001, 26(1): 713–724.
[9] FAHRENTHOLD E P, HORBAN B A. An improved hybrid particle-element method for hypervelocity impact simulation [J]. International Journal of Impact Engineering, 2001, 26(1): 169–178.
[10] CORVVONATO E, DESTEFANIS R, FARAUD M. Integral model for the description of the debris cloud structure and impact [J]. International Journal of Impact Engineering, 2001, 21: 115–128.
[11] COHEN L J. A debris cloud cratering model [J]. International Journal of Impact Engineering, 1995, 17(1/2/3): 229–240.
[12] MAIDEN C J, MCMILLAN A R. An investigation of the protection afforded a spacecraft by a thin shield [J]. AIAA Journal, 1964: 1992–1998.
[13] PIEKUTOWSKI A J. Fragmentation-initiation threshold for spheres impacting at hypervelocity [J]. International Journal of Impact Engineering, 2003, 29: 563–574. doi: 10.1016/j.ijimpeng.2003.10.005
[14] PIEKUTOWSKI A J. Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates [J]. International Journal of Impact Engineering, 1993, 14(1): 573–86.
[15] BASHUROV V V, BEBENIN G V, BELOV G V, et al. Experimental modeling and numerical simulation of high- and hypervelocity space debris impact to spacecraft shield protection [J]. International Journal of Impact Engineering, 1997, 20(1): 69–78.
[16] COUR-PALAIS B G. The shape effect of non-spherical projectiles in hypervelocity impacts [J]. International Journal of Impact Engineering, 2001, 26: 129–143. doi: 10.1016/S0734-743X(01)00075-6
[17] IYER K A, POORMON K L, DEACON R M, et al. Hypervelocity impact response of Ti-6Al-4V and commercially pure titanium [J]. Procedia Engineering, 2013, 58: 127–137. doi: 10.1016/j.proeng.2013.05.016
[18] FRIICHTENICHT J F, SLATTERY J C. Ionization associated with hypervelocity impact: D-2091 [R]. USA: NASA, 1963.
[19] CRAWFORD D A, SCHULTZ P H. Laboratory observation of impact-generated magnetic fields [J]. Nature, 1988, 336(6194): 50–52. doi: 10.1038/336050a0
[20] CRAWFORD D A, SCHULTZ P H. Laboratory investigation of impact-generated plasma [J]. Journal of Geophysical Research: Planets, 1991, 96: 18807–18817. doi: 10.1029/91JE02012
[21] CRAWFORD D A, SCHULTZ P H. The production and evolution of impact-generated magnetic fields [J]. International Journal of Impact Engineering, 1993, 14: 205–216. doi: 10.1016/0734-743X(93)90021-X
[22] GRUN D E, KISSEL J. The ion-composition of the plasma produced by impacts of fast dust particles [J]. Planetary and Space Science, 1977, 25(2): 135–147. doi: 10.1016/0032-0633(77)90017-4
[23] DIETZEL H, EICHORN G, FECHTIG H, et al. The HEOS2 and HELIOS micrometeoroid experiments [J]. Journal of Physics E: Scientific Instruments, 1973, 6(3): 209–217. doi: 10.1088/0022-3735/6/3/008
[24] GRÜN E, FECHTIG H, HANNER M S, et al. The Galileo dust detector [J]. Space Science Reviews, 1992, 60: 317–340.
[25] RATCLIFF P R, MC DONNELL J A M, FIRTH J G, et al. The cosmic dust analyser [J]. Journal of the British Interplanetary Society, 1992, 45: 355–358.
[26] CRAWFORD D A, SCHULTZ P H. Electromagnetic properties of impact-generated plasma, vapor and debris [J]. International Journal of Impact Engineering, 1999, 23: 169–180. doi: 10.1016/S0734-743X(99)00070-6
[27] RATCLIFF P R, REBER M, COLE M J, et al. Velocity thresholds for impact plasma production [J]. Advances in Space Research, 1997, 20(8): 1471–1476. doi: 10.1016/S0273-1177(97)00419-5
[28] RATCLIFF P R, ALLAHDADI F. Characteristics of the plasma from a 94 km/s micro-particle impact [J]. Advances in Space Research, 1996, 17(12): 87–91. doi: 10.1016/0273-1177(95)00763-5
[29] GAULT D E, HEITOWOT E D. The partition of energy for hypervelocity impact craters formed in rocks [C]//Proceedings of the 6th Hypervelocity Impact Symposium, 1963, 2: 419.
[30] 柳森, 谢爱民, 黄洁, 等. 超高速碰撞碎片云的激光阴影照相技术 [J]. 实验流体力学, 2005, 19(2): 35–39. doi: 10.3969/j.issn.1672-9897.2005.02.007

LIU S, XIE A M, HUANG J, et al. Laser shadowgraph for the visualization of hypervelocity impact debris cloud [J]. Journal of Experimnets in Fluid Mechanics, 2005, 19(2): 35–39. doi: 10.3969/j.issn.1672-9897.2005.02.007
[31] 柳森, 李毅, 黄洁, 等. 用于验证数值仿真的Whipple屏超高速撞击试验结果 [J]. 宇航学报, 2005, 26(4): 505–508. doi: 10.3321/j.issn:1000-1328.2005.04.024

LIU S, LI Y, HUANG J, et al. Hypervelocity impact test results of Whipple shield for the validation of numerical simulation [J]. Journal of Astronautics, 2005, 26(4): 505–508. doi: 10.3321/j.issn:1000-1328.2005.04.024
[32] 马兆侠, 黄洁, 石安华, 等. 铝球超高速撞击铝板反溅碎片云团辐射特性研究 [J]. 实验流体力学, 2014, 28(2): 90–94.

MA Z X, HUANG J, SHI A H, et al. Study on radiation characteristics of ricochet debris cloud form aluminum plate subjected to hypervelocity impacts by aluminum projectile [J]. Journal of Experimnets in Fluid Mechanics, 2014, 28(2): 90–94.
[33] 兰胜威, 柳森, 覃金贵, 等. 不同密度弹丸对水冰的超高速撞击成坑实验 [J]. 宇航学报, 2018, 39(9): 1054–1059.

LAN S W, LIU S, QIN J G, et al. Hypervelocity impact cratering in water ice by projectiles with different densities [J]. Journal of Astronautics, 2018, 39(9): 1054–1059.
[34] 庞宝君, 林敏, 张凯, 等. 丝网防护屏碎片云特性数值模拟研究 [J]. 高压物理学报, 2013, 27(3): 391–397. doi: 10.11858/gywlxb.2013.03.012

PANG B J, LIN M, ZHANG K, et al. Numerical simulation of debris cloud characteristics of the mesh shields [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 391–397. doi: 10.11858/gywlxb.2013.03.012
[35] 龚自正, 杨继运, 代福, 等. CAST空间碎片超高速撞击试验研究进展 [J]. 航天器环境工程, 2009, 26(4): 301–306. doi: 10.3969/j.issn.1673-1379.2009.04.001

GONG Z Z, YANG J Y, DAI F, et al. M/OD hypervelocity impact tests carried out in CAST [J]. Spacecraft Environment Engineering, 2009, 26(4): 301–306. doi: 10.3969/j.issn.1673-1379.2009.04.001
[36] 冉宪文, 张若棋, 徐志宏, 等. 超高速碰撞条件下铝靶熔化临界速度的理论估算及Grüneisen参数的影响[C]//第四届全国空间碎片专题研讨会. 南京, 2007.
[37] 裴晓阳, 唐蜜, 钟敏, 等. 超高速撞击下碎片云相分布的数值模拟研究[C]//第十四届全国物理力学学术会议缩编文集, 2016: 228.
[38] 李宝宝. 超高速碰撞下相变效应的数值模拟研究[D]. 长沙: 国防科学技术大学, 2010.

LI B B. The numerical simulation study on effect of phase transition in hypervelocity impacting [D]. Changsha: University of Defense Technology, 2010.
[39] TANG E L, WANG H L, XIA J, et al. Experimental study on plasma discharge induced by high-velocity impact solar array associated with projectile incidence angles [J]. International Journal of Applied Electromagnetics and Mechanics, 2016, 51(2): 107–117. doi: 10.3233/JAE-150119
[40] 唐恩凌, 张庆明, 张健. 超高速碰撞LY12铝靶产生等离子体的特征参量测量 [J]. 弹箭与制导学报, 2008, 28(4): 110–112. doi: 10.3969/j.issn.1673-9728.2008.04.034

TANG E L, ZHANG Q M, ZHANG J. Characteristic parameter measurement of plasma generated during hypervelocity impact on LY12 Aluminum target [J]. Jounral of Projectiles, Rochets, Missiles and Guidance, 2008, 28(4): 110–112. doi: 10.3969/j.issn.1673-9728.2008.04.034
[41] 马月芬, 张庆明, 吴碧, 等. 超高速碰撞产生等离子体的电磁场测量方法 [J]. 北京理工大学学报, 2011, 31(9): 1118–1121.

MA Y F, ZHANG Q M, WU B, et al. Measurement method of electromagnetic fields of plasma produced by hypervelocity impact [J]. Transactions of Beijing Institute of Technology, 2011, 31(9): 1118–1121.
[42] 马月芬, 张庆明, 李一磊, 等. 超高速碰撞产生的电磁场对通信电路的干扰 [J]. 北京理工大学学报, 2011, 31(7): 859–862.

MA Y F, ZHANG Q M, LI Y L, et al. Interference on communication circuits due to electromagnetic fields generated by hypervelocity impact [J]. Transactions of Beijing Institute of Technology, 2011, 31(7): 859–862.
[43] SONG W D, LV Y T, LI J Q, et al. Influence of impact conditions on plasma generation during hypervelocity impact by aluminum projectile [J]. Physics of Plasmas, 2016, 23: 073506. doi: 10.1063/1.4956440
[44] 栗建桥, 宋卫东, 宁建国. 超高速撞击产生的等离子体特性研究 [J]. 高压物理学报, 2011, 27(4): 542–548. doi: 10.11858/gywlxb.2013.04.012

LI J Q, SONG W D, NING J G. A study on characteristics of plasma generated by hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2011, 27(4): 542–548. doi: 10.11858/gywlxb.2013.04.012
[45] 宁建国, 栗建桥, 宋卫东. 超高速碰撞产生等离子体的毁伤特性研究 [J]. 力学学报, 2014, 46(6): 853–861.

NING J G, LI J Q, SONG W D. Investigation of plasma damage properties generated by hypervelocity impact [J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(6): 853–861.
[46] SONG W, LÜ Y, WANG C, et al. Investigation on plasma generated during hypervelocity impact at different impact velocities and angles [J]. Physics of Plasmas, 2015, 22(12): 123519. doi: 10.1063/1.4938516
[47] 李怡勇, 沈怀荣, 李智. 超高速撞击动力学及航天器防护研究进展 [J]. 力学与实践, 2009, 31(2): 11–16.

LI Y Y, SHEN H R, LI Z. Advances in hypervelocity impact dynamics and spacecraft protection research [J]. Mechanics in Engineering, 2009, 31(2): 11–16.
[48] BOSLOUGH M B, ANG J A, CHHABLLDAS L C, et al. Hypervelocity testing of advanced shielding concepts for spacecraft against impacts to 10 km/s [J]. International Journal of Impact Engineering, 1993, 14: 95–106. doi: 10.1016/0734-743X(93)90012-V
[49] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [J]. 高能量密度物理, 2017(4): 115–122.

WANG X, WANG Q S, PENG J X, et al. The application of three-stage gun in the study of space debris [J]. High Energy Density Physics, 2017(4): 115–122.
[50] LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. doi: 10.1016/j.ijimpeng.2010.10.019
[51] ZHANG X, WANG G, ZHAO J, et al. High velocity flyer plates launched by magnetic pressure on pulsed power generator CQ-4 and applied in shock Hugoniot experiments [J]. Review of Scientific Instruments, 2014, 85(5): 055110. doi: 10.1063/1.4875705
[52] 王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展 [J]. 物理学报, 2014, 63(19): 196201. doi: 10.7498/aps.63.196201

WANG G L, GUO S, SHEN Z W. Recent advances in hyper-velocity flyer launch experiments on PTS [J]. Acta Physica Sinica, 2014, 63(19): 196201. doi: 10.7498/aps.63.196201
[53] WALKER J D, GROSCH D J, MULLIN S A. A hypervelocity fragment launcher based on an inhibited shaped charge [J]. International Journal of Impact Engineering, 1993(14): 763–774.
[54] 杨继运. 二级轻气炮模拟空间碎片超高速碰撞试验技术 [J]. 航天器环境工程, 2006, 23(1): 16–22. doi: 10.3969/j.issn.1673-1379.2006.01.003

YANG J Y. Simulation of space debris hypervelocity impact using two stage light gas gun [J]. Spacecraft Environment Engineering, 2006, 23(1): 16–22. doi: 10.3969/j.issn.1673-1379.2006.01.003
[55] SEILER F, LGRA O. Hypervelocity lauchers [M]. Springer, 2016: 23–52.
[56] CANNING T N, SEIFF A, JAMES C S. Ballistic range technology [M]. North Atlantic Treaty Origanization, 1970: 9–54.
[57] EXOW B L, WICKERT M, THOMA K, et al. The extra-large light-gas gun of the Fraunhofer EMI: applications for impact cratering research [J]. Meteoritics & Planetary Science, 2013, 48(1): 3–7.
[58] 王金贵. 气体炮原理与技术 [M]. 北京: 国防工业出版社, 2001: 198–202.

WANG J G. Principle and technology of gas gun [M]. Beijing: National Defense Industry Press, 2001: 198–202.
[59] CHHABILDAS L C, KMETYK, L N, REINHART W D, et al. Enhanced hypervelocity launcher-capabilities to 16 km/s [J]. International Journal of Impact Engineering, 1995, 17: 183–194. doi: 10.1016/0734-743X(95)99845-I
[60] OSHER J E, HENRY G B, CHAU H, et al. Operating characteristics and modelling of the LLNL 100-kV electric gun [J]. IEEE Transactions on Plasma Science, 1989, 17(3): 392–402. doi: 10.1109/27.32247
[61] 张文兵, 龚自正, 杨继运, 等. 用于模拟空间碎片超高速撞击的激光驱动飞片系统 [J]. 空间碎片研究, 2007, 7(1): 26–30.

ZHANG W B, GONG Z Z, YANG J Y, et al. The laser-driven flyer system for space debris hypervelocity impact simulations [J]. Space Debris Research, 2007, 7(1): 26–30.
[62] PIEKUTOWSKI A J. Effects of scale on debris cloud properties [J]. International Journal of Impact Engineering, 1997, 20: 639–50. doi: 10.1016/S0734-743X(97)87451-9
[63] PIEKUTOWSKI A J, POORMON K L. Effects of scale on the performance of Whipple shields for impact velocities ranging from 7 to 10 km/s [J]. Procedia Engineering, 2013, 58: 642–652. doi: 10.1016/j.proeng.2013.05.074
[64] 贾祖朋, 张树道, 蔚喜军. 多介质流体动力学计算方法[M]. 北京: 科学出版社, 2014: 1–25.

JIA Z P, ZHANG S D, WEI X J. Numerical methods for dynamics of multi-material [M]. Beijing: Science Press, 2014: 1–25.
[65] PEERY J S, CARROLL D E. Multi-material ALE methods in unstructured grids [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 187(3/4): 591–619.
[66] WINGATE C A, STELLINGWERF R F, DAVIDSON R F, et al. Models of high velocity impact phenomena [J]. International Journal of Impact Engineering, 1993, 14: 819–830. doi: 10.1016/0734-743X(93)90075-I
[67] FREY J D, JANICOT F, GARAUD X, et al. The validation of hydrocodes for orbital debris impact simulation [J]. International Journal of Impact Engineering, 1993, 14: 255–265. doi: 10.1016/0734-743X(93)90025-3
[68] BURKETT M W, CLANCY S P, MAUDLIN P J, et al. Coupled plasticity and damage modeling and their applications in a three-dimensional Eulerian hydrocode [J]. International Journal of Impact Engineering, 2006, 33: 126–132. doi: 10.1016/j.ijimpeng.2006.09.068
[69] HORNER J K. A comparison of ballistic limit with adaptive-mesh Eulerian hydrocode predictions of one- and two-plate aluminum shielding protection against millimeter-sized Fe-Ni space debris [J]. International Journal of Impact Engineering, 2008, 35(12): 1602–1605. doi: 10.1016/j.ijimpeng.2008.07.039
[70] TRUCANO T G, MC GLAUN J M. Hypervelocity impact calculations using CTH: case studies [J]. International Journal of Impact Engineering, 1990, 10: 601–613. doi: 10.1016/0734-743X(90)90092-A
[71] GRIMALDI A, SOLLO A, GUIDA M, et al. Parametric study of a SPH high velocity impact analysis–a birdstrike windshield application [J]. Composite Structures, 2013, 96: 616–630. doi: 10.1016/j.compstruct.2012.09.037
[72] MICHEL Y, CHEVALIER J M, DURIN C, et al. Hypervelocity impacts on thin brittle targets: experimental data and SPH simulations [J]. International Journal of Impact Engineering, 2006, 33: 441–451. doi: 10.1016/j.ijimpeng.2006.09.081
[73] SHAW A, REID S R. Heuristic acceleration correction algorithm for use in SPH computations in impact mechanics [J]. Computer Methods in Applied Mechanics and Engineering, 2009, 198(49/50/51/52): 3962–3974.
[74] LIU X, OSHER S, CHAN T. Weighted essentially non-oscillatory schemes [J]. Journal of Computational Physics, 1994, 115(1): 200–212. doi: 10.1006/jcph.1994.1187
[75] COCKBURN B. Discontinuous Galerkin methods [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 2003, 83(11): 731–754. doi: 10.1002/(ISSN)1521-4001
[76] BEISSEL S R, GERLACH C A, JOHNSON G R. Hypervelocity impact computations with finite elements and meshfree particles [J]. International Journal of Impact Engineering, 2006, 33: 80–90. doi: 10.1016/j.ijimpeng.2006.09.047
[77] KOKH S, LAGOUTIÈRE F. An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of a five-equation model [J]. Journal of Computational Physics, 2010, 229(8): 2773–2809. doi: 10.1016/j.jcp.2009.12.003
[78] SHUKLA R K. Nonlinear preconditioning for efficient and accurate interface capturing in simulation of multicomponent [J]. Journal of Computational Physics, 2014, 276: 508–540. doi: 10.1016/j.jcp.2014.07.034
[79] XIAO F, LI S, CHEN C. Revisit to the THINC scheme: a simple algebraic VOF algorithm [J]. Journal of Computational Physics, 2011, 230(19): 7086–7092. doi: 10.1016/j.jcp.2011.06.012
[80] SAMBASIVAN S K, UDAYKUMAR H S. A sharp interface method for high-speed multi-material flows: strong shocks and arbitrary material pairs [J]. International Journal of Computational Fluid Dynamics, 2011, 25(3): 139–162. doi: 10.1080/10618562.2011.558011
[81] KIPP M E, GRADY D E. High-pressure shock compression of solids II dynamic fracture and fragmentation [M]. Springer, 1996: 238.
[82] MCGLAUN J M, THOMPSON S L, ELRICK M G. CTH: A three-dimensional shock wave physics code [J]. International Journal of Impact Engineering, 1990, 10: 351–360. doi: 10.1016/0734-743X(90)90071-3
[83] 王言金, 刘军. Whipple防护结构超高速碰撞的欧拉数值模拟: GF-A 23030504 [R]. 北京: 北京应用物理与计算数学研究所, 2014.

WANG Y J, LIU J. Eulerian numerical study of hypervelocity impacts on Whipple shields: GF-A 23030504 [R]. Beijing: Institute of Applied Physics and Computational Mathematics, 2014.
[84] 梁仙红, 李征, 何长江, 等. 多介质流体力学两步欧拉方法的模型封闭性方法 [J]. 计算物理, 2010, 27(5): 658–664. doi: 10.3969/j.issn.1001-246X.2010.05.004

LIANG X H, LI Z, HE C J, et al. Closing relations in two-step Eulerian method for multifluid dynamics [J]. Chinese Journal of Computational Physics, 2010, 27(5): 658–664. doi: 10.3969/j.issn.1001-246X.2010.05.004
[85] THOMPSON S L, MCGLAUN J L. CSQIII-an Eulerian finite difference program for two-dimensional material response: user’s manual: Sandia Report SAND87-2763 [R]. Albuquerque: Sandia National Laboratories, 1988.
[86] HERTEL E S, MCINTOSH R L, PATTERSON B C. A comparison of phase change phenomena in CTH experimental data [J]. International Journal of Impact Engineering, 1995, 17: 399–408. doi: 10.1016/0734-743X(95)99865-O
[87] POVARNITSYN M E, KHISHCHENKO K V, LEVASHOV P R. Simulation of melting and vaporization of metals at hypervelocity impact [J]. Journal of Physics: Conference Series, 2008(98): 042025.
[88] CHEN J, MICHAEL H, CHI S. Meshfree methods: progress made after 20 years [J]. Journal of Engineering Mechanics, 2017, 143(4): 04017001. doi: 10.1061/(ASCE)EM.1943-7889.0001176
[89] GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices Royal Astronomy Society, 1977, 181(3): 375–389. doi: 10.1093/mnras/181.3.375
[90] GUAN P C, CHI S W, CHEN J S. Semi-Lagrangian reproducing kernel particle method for fragment-impact problems [J]. International Journal of Impact Engineering, 2011(38): 1033–1047.
[91] SULSKY D, CHEN Z, SCHREYER. A particle method for history-dependent materials [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118: 179–196. doi: 10.1016/0045-7825(94)90112-0
[92] LI B, HABBAL F, ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010(83): 1541–1579.
[93] LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82: 1013–1024. doi: 10.1086/112164
[94] MONAGHAN J J. An introduction to SPH [J]. Computer Physics Communications, 1988, 48(1): 89–96. doi: 10.1016/0010-4655(88)90026-4
[95] LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [M]//Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Heidelberg: Springer Berlin Heidelberg, 1991: 248–257.
[96] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. doi: 10.1007/s11831-010-9040-7
[97] 乐莉, 闫军, 钟秋海. 超高速撞击仿真算法分析 [J]. 系统仿真学报, 2014, 16(9): 1941–1943.

YUE L, YAN J, ZHONG Q H. Simulations of debris impacts using three different algorithms [J]. Journal of System Simulation, 2014, 16(9): 1941–1943.
[98] HIERMAIER S, KONKE D, STILP A J, et al. Computational simulation of the hypervelocity impact of Al-spheres on thin plates of different materials [J]. International Journal of Impact Engineering, 1997, 20(1): 363–374.
[99] 王林, 胡秀章, 李永池, 等. 基于LS-DYNA的超高速撞击SPH数值模拟研究 [J]. 防护工程, 2010, 32(2): 32–38.

WANG L, HU X Z, LI Y C, et al. Numerical simulation of hypervelocity impact by smoothed particle hydrodynamics using LS-DYNA [J]. Protective Engineering, 2010, 32(2): 32–38.
[100] 徐英, 时家明, 林志丹. 撞击物形状和速度对高速撞击结果的影响 [J]. 弹箭与制导学报, 2010, 30(2): 106–110. doi: 10.3969/j.issn.1673-9728.2010.02.032

XU Y, SHI J M, LIN Z D. On the shape and velocity of impact bodies in hypervelocity impact [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(2): 106–110. doi: 10.3969/j.issn.1673-9728.2010.02.032
[101] LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics: a threedimensional SPH code for dynamic material response [J]. Journal of Computational Physics, 1993, 109(1): 67–75. doi: 10.1006/jcph.1993.1199
[102] ZHOU C E, LIU G R, LOU K Y. Three-dimensional penetration simulation using smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2007, 4(4): 671–691. doi: 10.1142/S0219876207000972
[103] MEDINA D F, CHEN J K. Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method [J]. Composites: Part A, 2000, 31(8): 853–860. doi: 10.1016/S1359-835X(00)00031-2
[104] HIERMAIER S, KÖNKE D, STILP A J, et al. Computaional simulation of the hypervelocity impact of Al-spheres on thin plates of different materials [J]. International Journal of Impact Engineeringn, 1997, 20(1): 363–374.
[105] GROENENBOOM P H L. Numerical simulation of 2D and 3D hypervelocity impact using the SPH option in PAM-SHOCK [J]. International Journal of Impact Engineering, 1997, 20: 309–323. doi: 10.1016/S0734-743X(97)87503-3
[106] FARAUD M, DESTEFANIS R, PALMIERI D, et al. SPH simulations of debris impacts using two different computer codes [J]. International Journal of Impact Engineering, 1999, 23: 249–260. doi: 10.1016/S0734-743X(99)00077-9
[107] HARLOW F H. The particle-in-cell computing method for fluid dynamics [J]. Methods for Computational Physics, 1964, 3: 319–343.
[108] BRACKBILL J U, RUPPEL H M. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions [J]. Journal of Computational Physics, 1986, 65: 314–343. doi: 10.1016/0021-9991(86)90211-1
[109] 廉艳平, 张帆, 刘岩, 等. 物质点的理论和应用 [J]. 力学进展, 2013, 43(2): 237–264.

LIAN Y P, ZHANG F, LIU Y, et al. Material point method and its applications [J]. Advaced in Mechanics, 2013, 43(2): 237–264.
[110] 黄鹏. 金属及岩土冲击动力学问题的物质点法研究[D]. 北京: 清华大学, 2010: 69–70.

HUANG P. Material point method for metal and soil impact dynamics problems [D]. Beijing: Tsinghua University, 2010: 69–70.
[111] LIU P, LIU Y, ZHANG X, et al. Investigation on high-velocity impact of micron particles using material point method [J]. International Journal of Impact Engineering, 2015, 75: 241–254. doi: 10.1016/j.ijimpeng.2014.09.001
[112] ZHANG C, KALIA R K, NAKANO A, et al. Hypervelocity impact induced deformation modes in α-alumina [J]. Applied Physics Letters, 2007, 91: 071906. doi: 10.1063/1.2753092
[113] SAMELA J, KAI N. Atomistic simulation of the transition from atomistic to macroscopic cratering [J]. Physical Review Letters, 2008, 101(2): 027601. doi: 10.1103/PhysRevLett.101.027601
[114] ANDERS C, BRINGA E M, URBASSEK H M. Crater production by energetic nanoparticle impact on Au nanofoams [J]. Applied Physics Letters, 2016, 108(11): 113108. doi: 10.1063/1.4944420
[115] 巨圆圆, 张庆明, 龚良飞, 等. 球形弹丸超高速撞击铝靶的分子动力学模拟 [J]. 航天器环境工程, 2018, 35(2): 153–157. doi: 10.3969/j.issn.1673-1379.2018.02.009

JU Y Y, ZHANG Q M, GONG L F, et al. Molecular dynamics simulation for hypervelocity impact of spherical projectile to aluminum target [J]. Spacecraft Environment Engineering, 2018, 35(2): 153–157. doi: 10.3969/j.issn.1673-1379.2018.02.009
[116] JARAMILLO-BOTERO A, AN Q, THEOFANIS P L, et al. Large-scale molecular simulations of hypervelocity impact of materials [J]. Procedia Engineering, 2013, 58: 167–176. doi: 10.1016/j.proeng.2013.05.020
[117] 李毅, 柳森. 航天器铝合金面板的超高速撞击数值模拟 [J]. 载人航天, 2004(6): 52–55.
[118] 冯春, 李世海, 刘晓宇. 一种基于颗粒接触的二维无网格方法及其在高速冲击模拟中的应用 [J]. 爆炸与冲击, 2014, 34(3): 292–299. doi: 10.11883/1001-1455(2014)03-0292-08

FENG C, LI S H, LIU X Y. A 2D particle contact-based meshfree method and its application to hypervelocity impact simulation [J]. Explosion and Shock Waves, 2014, 34(3): 292–299. doi: 10.11883/1001-1455(2014)03-0292-08
[119] JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. doi: 10.1016/S0734-743X(03)00012-5
[120] JOHNSON G R, BEISSEL S R, GERLACH C A. Another approach to a hybrid particle-finite element algorithm for high-velocity impact [J]. International Journal of Impact Engineering, 2011, 38(5): 397–405. doi: 10.1016/j.ijimpeng.2011.01.002
[121] JOHNSON G R, BEISSEL S R, STRYK R A. A generalized particle algorithm for high velocity impact computations [J]. Computational Mechanics, 2000, 25(2/3): 245–256.
[122] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
[123] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Seventh International Symposium on Ballistics. The Hague, Netherlands, 1983.
[124] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
[125] SELYUTINA N S, PETROV Y V. Structural and temporal features of high-rate deformation of metals [J]. Doklady Physics, 2017, 62(2): 102–105. doi: 10.1134/S1028335817020136
[126] SCHÄFER F K. An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates [J]. International Journal of Impact Engineering, 2006, 33: 745–762. doi: 10.1016/j.ijimpeng.2006.09.067
[127] STEINBERG D J, LUND C M. A constitutive model for strain rates from 10-4 to 106 s-1 [J]. Journal of Applied Physics, 1989, 65(4): 1528–1533. doi: 10.1063/1.342968
[128] 张伟, 庞宝君, 贾斌, 等. 弹丸超高速撞击防护屏碎片云数值模拟 [J]. 高压物理学报, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009

ZHANG W, PANG B J, JIA B, et al. Numerical simulation of debris cloud produced by hypervelocity impact of projectile on bumper [J]. Chinese Journal of High Pressure Physics, 2004, 18(1): 47–52. doi: 10.3969/j.issn.1000-5773.2004.01.009
[129] MCQUEEN R G, MARSH S P, FRITZ J N. Ultrabasic rocks and the composition of the upper mantle [J]. Journal of Geophysical Research: Planets, 1967, 72: 4999. doi: 10.1029/JZ072i020p04999
[130] BJORK R L, OLSHAKER A E. The role of melting and vaporization in hypervelocity impact: RM-3490-PR [R]. USA: USA Air Force, 1965.
[131] TANG E L, ZHANG Q M, ZHANG J. Preliminary study on diagnostic techniques for transient plasma generated by hypervelocity impact [J]. Plasma Science and Technology, 2008, 10(6): 735–738. doi: 10.1088/1009-0630/10/6/16
[132] KRAUS R G, STEWART S T, SWIFT D C, et al. Shock vaporization of silica and the thermodynamics of planetary impact events [J]. Journal of Geophysical Research, 2012, 117(E9): 371–387.
[133] HORNUNG K, MICHEL K W. Equation-of-state data of solids from shock vaporization [J]. Journal of Chemical Physics, 1971, 56(5): 2072–2078.
[134] HORNUNG K, MALAMA Y G, THOMA K. Modeling of the very high velocity impact process with respect to in-situ ionization measurements [J]. Advances in Space Research, 1996, 17(12): 77–86. doi: 10.1016/0273-1177(95)00762-4
[135] HORNUNG K. Impact vaporization and ionization of cosmic dust particles [J]. Astrophysics and Space Science, 2000, 274: 355–363. doi: 10.1023/A:1026553502542
[136] POVARNITSYN M E, KHISHCHENKO K V, LEVASHOV P R. Hypervelocity impact modeling with different equations of state [J]. International Journal of Impact Engineering, 2006, 33: 625–633. doi: 10.1016/j.ijimpeng.2006.09.078
[137] BRUNDAGE A L. Implementation of Tillotson equation of state for hypervelocity impact of metals, geologic materials, and liquids [J]. Procedia Engineering, 2013, 58: 461–470. doi: 10.1016/j.proeng.2013.05.053
[138] BERGH M, GARCIA V. A computational models for assessing high-velocity debris impact in space applications [J]. Shock Waves, 2017, 27(4): 675–684. doi: 10.1007/s00193-017-0709-9
[139] TILLOTSON J H. Metallic equations of state for hypervelocity impact: General Atomic Report GA-3216 [R]. San Diego, CA: General Atomic, 1962.
[140] SCHONBERG W P. Characterizing material states in orbital debris impacts [J]. Proceedings of SPIE -The International Society for Optical Engineering, 1995, 2483: 31–39.
[141] THOMPSON S L, LAUSON H S. Improvements in the Chart D radiation-hydrodynamic CODE III: revised analytic equations of state: SC-RR-71-0714 [R]. Albuquerque, New Mexico: Sandia National Laboratories, 1972.
[142] MELOSH H J. A hydrocode equation of state for SiO2 [J]. Meteoritics & Planetary Science, 2007, 42(12): 2079–2098.
[143] LITTLEFIELD D L. ANEOS extensions for modeling hypervelocity impact [J]. International Journal of Impact Engineering, 1997, 20: 533–544. doi: 10.1016/S0734-743X(97)87442-8
[144] COLLINS G S, MELOSH H J. Improvments to ANEOS for multiple phase transitions [C]//45th Lunar and Planetary Science Conference, 2014: 2664.
[145] JOHNSON J D. The SESAME databse [C]// 12th Symposium on Thermophysical Properties Boulder. Colorado, 1994: LA-UR-9401451.
[146] LYON P, JOHNSON J D. SESAME: the Los Alamos national laboratory equation of state database: LA-UR-92-3407 [R]. USA: Los Alamos national laboratory, 1992.
[147] 唐蜜, 刘仓理, 李平, 等. 超高速撞击产生碎片云相分布数值模拟 [J]. 强激光与粒子束, 2012, 24(9): 2203–2206.

TANG M, LIU C L, LI P. Numerical simulation of phase distribution of debris cloud generated by hypervelocity impact [J]. High Power Laser and Particle Beams, 2012, 24(9): 2203–2206.
[148] CHHABILDAS L C, REINHART W D, THORNHILL T F, et al. Debris generation and propagation phenomenology from hypervelocity impacts on aluminum from 6 to 11 km/s [J]. International Journal of Impact Engineering, 2003, 29: 185–202. doi: 10.1016/j.ijimpeng.2003.09.016
[149] ROYCE E B. A three-phase equation of state for metals: UCRL-51121 [R]. USA: Lawrence Livermore Lab, 1971.
[150] GROVER R. Liquid metal equation of state based on scaling [J]. Journal of Chemical Physics, 1971, 55(7): 3435–3441. doi: 10.1063/1.1676596
[151] YOUNG D A, ALDER B J. Critical point of metals from the van der Waals model [J]. Physics Review A, 1971, 3(1): 364–371. doi: 10.1103/PhysRevA.3.364
[152] 于继东, 李平, 王文强, 等. 金属铝固液气完全物态方程研究 [J]. 物理学报, 2014, 63(11): 116401. doi: 10.7498/aps.63.116401

YU J D, LI P, WANG W Q, et al. A solid-liquid-gas three phase complete equation of state of aluminum [J]. Acta Physica Sinica, 2014, 63(11): 116401. doi: 10.7498/aps.63.116401
[153] 唐蜜. 基于欧拉方法的超高速撞击程序研制及碎片云相分布数值模拟 [D]. 绵阳: 中国工程物理研究院, 2015: 85–98.

TANG M. Development of hypervelocity impact codes based on Euler method and numerical study of the phase distribution in debris cloud [D]. Mianyang: China Academy of Engineering Physics, 2015: 85–98.
[154] PIEKUTOWSKI A J, POORMON K L. Holes formed in thin aluminum sheets by spheres with impact velocities from 2 to 10 km/s [J]. Procedia Engineering, 2015, 103: 482–489. doi: 10.1016/j.proeng.2015.04.063
[155] PIEKUTOWSKI A J. Formation and description of debris clouds produced by hypervelocity impact: NASA-CR-201000 [R]. USA: NASA, 1995.
[156] MESPOULET J, HÉREIL P L, ABDULHAMID H, et al. Experimental study of hypervelocity impacts on space shields above 8 km/s [J]. Procedia Engineering, 2017, 204: 508–515. doi: 10.1016/j.proeng.2017.09.748
[157] HILL S A. Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact [J]. International Journal of Impact Engineering, 2004, 30(3): 303–321. doi: 10.1016/S0734-743X(03)00079-4
[158] DE CHANT L J. A high velocity plate penetration hole diameter relationship based on late time stagnation point flow concepts [J]. Applied Mathematics and Computation, 2005, 170(1): 410–424. doi: 10.1016/j.amc.2004.12.047
[159] HOSSEINI M, ABBAS H. Growth of hole in thin plates under hypervelocity impact of spherical projectiles [J]. Thin-Walled Structures, 2006, 44(9): 1006–1016. doi: 10.1016/j.tws.2006.08.024
[160] ABBAS H, ALSAYED S H, ALMUSALLAM T H, et al. Characterization of hole-dameter in thin metallic plates perforate by spherical projectiles using genetic algorithms [J]. Archive of Applied Mechanics, 2011, 81(7): 907–924. doi: 10.1007/s00419-010-0459-y
[161] ROSENBERG Z, KOSITSKI R. The hole diameter in metallic plates impacted by hypervelocity projectiles [J]. International Journal of Impact Engineering, 2017, 102: 147–155. doi: 10.1016/j.ijimpeng.2016.12.015
[162] SHINAR G I, BARNEA N, RAVID M, et al. An analytical model for the cratering of metallic targets by hypervelocity long rods [C]// 15th International Symposium on Ballistics. Jerusalem, 1995: 59-66.
[163] JOLLY W H, SCHONBERG W P. Analytical prediction of hole diameter in thin plates due to hypervelocity impact of spherical projectiles [J]. Shock and Vibration, 1997, 4(5/6): 379–390.
[164] 迟润强, 庞宝君, 何茂坚, 等. 球形弹丸超高速正撞击薄板破碎状态实验研究 [J]. 爆炸与冲击, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002

CHI R Q, PANG B J, HE M J, et al. Experimental investigation for deformation and fragmentation of spheres penetrating sheets at hypervelocity [J]. Explosion and Shock Waves, 2009, 29(3): 231–236. doi: 10.3321/j.issn:1001-1455.2009.03.002
[165] 汪庆桃, 吴克刚, 陈志阳. 圆柱形长杆超高速正碰撞薄板结构破碎效应 [J]. 振动与冲击, 2017, 36(5): 54–60.

WANG Q T, WU K G, CHEN Z Y. Fragmentation effect of a long cylindrical rod with a hypervelocity normally impacting a thin plate structure [J]. Journal of Vibration and Shock, 2017, 36(5): 54–60.
[166] PIEKUTOWSKI A J. Formation and description of debris cloud produced by hypervelocity impact: NASA-CR-201000 [R]. USA: NASA, 1995.
[167] SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17: 719–730. doi: 10.1016/0734-743X(95)99894-W
[168] POORMON K L, PIEKUTOWSKI A J. Comparisions of cadmium and aluminum debris clouds [J]. International Journal of Impact Engineering, 1995, 17: 639–648. doi: 10.1016/0734-743X(95)99887-W
[169] HOPKINS A K, LEE T W, SWIFT H F. Materials phase transformation effects upon performance of spaced bumper systems [J]. Journal of Spacecraft and Rockets, 1970, 9(5): 342–345.
[170] ANDERSON C E JR, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. doi: 10.1016/0734-743X(90)90024-P
[171] BJORK R L. The physics of hypervelocity lethality [J]. International Journal of Impact Engineering, 1987, 5: 129–154. doi: 10.1016/0734-743X(87)90034-0
[172] SHOCKEY D A, CURRAN D R, OSHER J E, et al. Disintegration behavior of metal rods subjected to hypervelocity impact [J]. International Journal of Impact Engineering, 1987, 5: 585–593. doi: 10.1016/0734-743X(87)90073-X
[173] PIERAZZO E, VICKERY A M, MELOSH H J. A reevaluation of impact melt production [J]. Icarus, 1997, 127(2): 408–423. doi: 10.1006/icar.1997.5713
[174] QUINTANA S N, CRAWFORD D A, SCHULTZ P H. Analysis of impact melt and vapor production in CTH for planetary applications [J]. Procedia Engineering, 2015, 103: 499–506. doi: 10.1016/j.proeng.2015.04.065
[175] POVARNITSYN M E, KHISHCHENKO K V, LEVASHOV P R. Simulation of shock-induced fragmentation and vaporization in metals [J]. International Journal of Impact Engineering, 2008, 35(12): 1723–1727. doi: 10.1016/j.ijimpeng.2008.07.011
[176] 宋卫东, 吕旸涛, 栗建桥. 超高速碰撞产生等离子体的电磁特性研究[C]// 第十四届全国物理力学学术会议缩编文集, 2016.
[177] 龙仁荣, 张庆明. 超高速弹丸碰撞薄板产生碎片云的运动模型分析 [J]. 北京理工大学学报, 2009, 29(3): 193–196.

LONG R R, ZHANG Q M. Dynamic model for debris clouds produced from impacts of hypervelocity projectiles with thin sheets [J]. Transactions of Beijing Institute of Technology, 2009, 29(3): 193–196.
[178] SWIFT H F. Impact dynamics [M]. New York: John Wiley & Sons, 1982.
[179] PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471.
[180] BLESS S J. Bumper debris cloud structure estimated by shock calculations [J]. Journal de Physique III, 1991, 1(3): 903–908.
[181] 郑建东, 龚自正, 席爽, 等. 超高速撞击碎片云模型研究综述[C]//第六届全国空间碎片学术交流会, 2011: 671–682.

ZHENG J D, GONG Z Z, XI S, et al. Review of debris cloud models produced by hypervelocity impact of space debris [C]// 6th Symposium on debris in space, 2011: 671–682.
[182] NEBOLSINE P E, GELB A, LEGNER H H, et al. Simple model for the debris velocity and distribution due to a catastrophic impact [C]// AIAA Space Programs and Technologies Conference and Exhibit. USA: AIAA, 1994
[183] SCHONBERG W P, WILLIAMSEN J E. Empirical hole size and crack length models for dual-wall systems under hypervelocity projectile impact [J]. International Journal of Impact Engineering, 1997, 20(6): 711–722.
[184] 迟润强. 弹丸超高速撞击薄板碎片云建模研究[D]. 哈尔滨: 哈尔滨工业大学, 2010: 100–120.

CHI R Q. Research and modeling of debris cloud produced by hypervelocity impact of projectile with thin plate [D]. Harbin: Harbin Institute of Technology, 2010: 100–120.
[185] 管公顺, 朱耀, 迟润强, 等. 铝双层板结构撞击损伤的板间距效应实验研究 [J]. 材料科学与工艺, 2008, 16(5): 692–695. doi: 10.3969/j.issn.1005-0299.2008.05.025

GUAN G S, ZHU Y, CHI R Q, et al. Experimental investigation of space effect on damage of aluminum dual-wall structure by hypervelocity impact [J]. Materials Science & Technology, 2008, 16(5): 692–695. doi: 10.3969/j.issn.1005-0299.2008.05.025
[186] PIEKUTOWSKI A J, POORMON K L, CHRISTIANSEN E L, et al. Performance of Whipple shields at impact velocities above 9 km/s [J]. International Journal of Impact Engineering, 2011, 38(6): 95–503.
[187] COUR-PALAIS B G. Hypervelocity impact in metals, glass and composites [J]. International Journal of Impact Engineering, 1987, 5: 221–237. doi: 10.1016/0734-743X(87)90040-6
[188] PIEKUTOWSKI A J. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates [J]. International Journal of Impact Engineering, 1987, 5: 509–518. doi: 10.1016/0734-743X(87)90066-2
[189] VERMA P N, DHOTE K D. Characterising primary fragment in debris cloud formed by hypervelocity impact of spherical stainless steel projectile on thin steel plate [J]. International Journal of Impact Engineering, 2018, 120: 118–125. doi: 10.1016/j.ijimpeng.2018.05.003
[190] SCHONBERG W P. Concise history of ballistic limit equations for multi-wall spacecraft shielding [J]. REACH-Reviews in Human Space Exploration, 2016(1): 46–54.
[191] 袁俊刚, 曲广吉, 闫军. 国外空间碎片防护结构弹道极限方程分析 [J]. 空间碎片, 2007, 7(7): 21–25.

YUAN J G, QU G J, YAN J. Analysis for development of ballistic limit equations of space debris shield configurations from other countries [J]. Space Debris Research, 2007, 7(7): 21–25.
[192] 闫军, 曲广吉, 郑世贵. 空间碎片超高速撞击弹道极限方程的研究评述 [J]. 航天器工程, 2005, 14(2): 42–46.

YAN J, QU G J, ZHENG S G. Comments on the ballistic limit equations of space debris with hypervelocity [J]. Spacecraft Engineering, 2005, 14(2): 42–46.
[193] HAYASHIDA K B, ROBINSON J H. Double-plate penetration equations: NASA/TM-2000-209907 [R]. USA: NASA Marshall Space Flight Cener, 2000.
[194] LI W. The relationship between Brinell hardness and strength of material [J]. Heavy Cast Forg, 1994, 65(3): 48–51.
[195] ZHANG X, JIA G, HUANG H. An approach for constituting double/multi wall BLE by single wall BLE of spacecraft shield [J]. International Journal of Impact Engineering, 2014, 69: 114–121. doi: 10.1016/j.ijimpeng.2014.02.009
[196] FISH R H, SUMMERS J L. The effect of material properties on threshold penetration [C]// Proceedings of the Seventh Hypervelocity Impact Symposium. Tampa, 1965.
[197] FROST V C. Meteoroid damage assessment: NASA SP-8042 [R]. USA: NASA, 1970.
[198] CORONADO A R, GIBBINS M N, WRIGHT M A, et al. Space station integrated wall design and penetration damage control: NAS8-36426 [R]. USA: NASA, 1987.
[199] HOLSAPPLE K A, SCHMIDT R M. On the scaling of crater dimensions 2 impact process [J]. Journal of Geophysical Research, 1982, 87: 1849–1870. doi: 10.1029/JB087iB03p01849
[200] COUR-PALAIS B G. Hypervelocity impact investigations and meteoroid shielding experience related to Apollo and Skylab: NAS-S-82-05009 [R]. USA: NASA, 1984.
[201] HAYASHIDA K B, ROBINSON J H. Single wall penetration equations: NASA TM-103565 [R]. USA: NASA, 1991.
[202] CHRISTIANSEN E L. Shield sizing and response equations: NASA-SN3-91-42 [R]. USA: NASA, 1991.
[203] LEE M, CHO Y J. Characterization of the ballistic limit curve for hypervelocity impact of sphere onto single plate [J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2457–2463. doi: 10.1007/s12206-011-0716-1
[204] 贾斌, 盖芳芳, 马志涛, 等. 5A06铝合金单层板超高速撞击弹道极限分析 [J]. 材料科学与工艺, 2007, 15(5): 636–639. doi: 10.3969/j.issn.1005-0299.2007.05.011

JIA B, GAI F F, MA Z T. Ballistic limit analysis of aluminum 5A06 single wall plate subjected to hypervelocity impact [J]. Materials Science & Technology, 2007, 15(5): 636–639. doi: 10.3969/j.issn.1005-0299.2007.05.011
[205] 徐小刚, 贾光辉, 黄海. 单层板超高速撞击弹道极限方程综合建模 [J]. 弹箭与制导学报, 2007, 15(5): 636–639.

XU X G, JIA G H, HUANG H. Integrated modeling of ballistic limit equations of single plate under hypervelocity impact [J]. Journal of Projectiles, Rockets, Missiles and Guidance, Materials Science & Technology, 2007, 15(5): 636–639.
[206] 张晓天, 谌颖, 贾光辉. 航天器单层板结构弹道极限的支持向量机预测模拟 [J]. 宇航学报, 2014, 35(3): 298–305. doi: 10.3873/j.issn.1000-1328.2014.03.008

ZHANG X T, CHEN Y, JIA G H. Support vector machine model for spacecraft single wall ballistic limit prediction [J]. Journal of Astronautics, 2014, 35(3): 298–305. doi: 10.3873/j.issn.1000-1328.2014.03.008
[207] COUR-PALAIS B G. Meteoroid protection by multi-wall structures [C]//AIAA Hypervelocity Impact Conference. Cincinnati, 1969: 69–372.
[208] REIMERDES H G, NLKE D, SCHÄFER F. Modified Cour-Palais/Christiansen damage equations for double-wall structures [J]. International Journal of Impact Engineering, 2006, 33: 645–654. doi: 10.1016/j.ijimpeng.2006.09.036
[209] CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26(1): 93–104.
[210] 贾光辉, 张平, 李轩, 等. 双层板弹道极限方程的速度区间修正方法 [J]. 空间碎片研究与应用, 2012, 12(4): 25–30.

JIA G H, ZHANG P, LI X, et al. Whipple ballistic limit equations optimization method via correcting the velocity region [J]. Space Debris Research and Application, 2012, 12(4): 25–30.
[211] RYAN S, CHRISTIANSEN E L. A ballistic limit analysis programme for shielding against micrometeroids and orbital debris [J]. Acta Astronautica, 2011, 69(5/6): 245–257.
[212] RYAN S, THALER S. Artificial neural networks for characterizing Whipple shield performance [J]. International Journal of Impact Engineering, 2013, 56: 61–70. doi: 10.1016/j.ijimpeng.2012.10.011
[213] MILLER J E, BJORKMAN M D, CHRISTIANSEN E L, et al. Analytic ballistic performance model of Whipple shields [J]. Procedia Engineering, 2015, 103: 389–397. doi: 10.1016/j.proeng.2015.04.037
[214] 袁俊刚, 曲广吉, 韩增尧, 等. 空间碎片防护结构弹道极限方程综合建模研究 [J]. 空间碎片研究, 2008, 8(2): 14–19.

YUAN J G, QU G J, HAN Z Y, et al. Modeling ballistic limit of M/OD Whipple shield [J]. Space Debris Research, 2008, 8(2): 14–19.
[215] 郑建东, 龚自正, 童靖宇, 等. 新型高精度Whipple防护结构弹道极限方程的精度对比 [J]. 空间碎片研究与应用, 2012, 12(1): 28–32.

ZHENG J D, GONG Z Z, TONG J Y. Accuracy comparison of a new type with high accuracy Whipple shield ballistic limit equations [J]. Space Debris Research and Application, 2012, 12(1): 28–32.
[216] 贾光辉, 欧阳智江, 蒋辉, 等. Whipple防护结构弹道极限方程的多指标修正 [J]. 宇航学报, 2013, 34(12): 1651–1656. doi: 10.3873/j.issn.1000-1328.2013.12.016

JIA G H, OU Y Z Z, JIANG H, et al. Multiple indicator correction for Whipple shield ballistic limit equation [J]. Journal of Astronautics, 2013, 34(12): 1651–1656. doi: 10.3873/j.issn.1000-1328.2013.12.016